1" alt="\log_5(x+5)+\log_5(x+1)>1" align="absmiddle" class="latex-formula">
ОДЗ:
0 \\ x+1>0 \end{array}} \ \ \Leftrightarrow \ \ \left\{\begin{array}{I} x>-5 \\ x>-1 \end{array}} \ \ \Leftrightarrow \ \ x \in (-1; \ + \infty)" alt="\left\{\begin{array}{I} x+5>0 \\ x+1>0 \end{array}} \ \ \Leftrightarrow \ \ \left\{\begin{array}{I} x>-5 \\ x>-1 \end{array}} \ \ \Leftrightarrow \ \ x \in (-1; \ + \infty)" align="absmiddle" class="latex-formula">
\log_55 \\ (x+5)(x+1)>5 \\ x^2+6x+5>5 \\ x^2+6x>0 \\ x(x+6)>0 \\ x \in (- \infty; \ -6) \cup (0; \ + \infty)" alt="\log_5(x+5)(x+1)>\log_55 \\ (x+5)(x+1)>5 \\ x^2+6x+5>5 \\ x^2+6x>0 \\ x(x+6)>0 \\ x \in (- \infty; \ -6) \cup (0; \ + \infty)" align="absmiddle" class="latex-formula">
С учетом ОДЗ: