(log2(x)+5)/(log2(x)-1) + 1 = 0
Замена переменных
log2(x) = y
(y+5)/(y-1) + 1 = 0
(y + 5 + y - 1)/(y - 1) = 0
(2y + 4)/(y -1) = 0
ОДЗ: y =/= 1
2y + 4 = 0
y = -2
Находим х
log2(x) = -2
x = 2^(-2) = 1/4 = 0,25
(7*log3(x) - 15)/(5*log3(x) + 3) + 1 = 0
Замена переменных
у = log3(x)
(7y - 15)/(5y + 3) + 1 = 0
(7y - 15 + 5y + 3)/(5y + 3) = 0
(12y - 12)/(5y + 3) = 0
ОДЗ: y =/= -3/5
12y - 12 = 0
y = 1
Находим х
log3(x) = 1
x = 3^1 = 3