К окружности проведена касательная.Докажите,что сумма расстояний от концов любого...

0 голосов
170 просмотров

К окружности проведена касательная.Докажите,что сумма расстояний от концов любого диаметра до этой касательной равна диаметру этой окружности.


Геометрия (144 баллов) | 170 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Пусть Центр окружности О, диаметр АВ, С - точка касания прямой А1В1, ВВ1 перпендикулярно А1В1, АА1 II BB1 (само собой, и СО II BB1). Строим СЕ перпендикулярно АВ и продливаем до пересечения с окружностью в точке К. Ясно, что дуга СВ равна дуге ВК, поэтому углы ВСЕ и В1СВ равны - они измеряются половиной равных дуг. Поэтому прямоугольные треугольники СВ1В и СЕВ равны ,и В1В = ЕВ. 

Далее, отсюда же следует, что СВ1 = СЕ, но СВ1 = СА1 (не зря я про параллельность СО, АА1 и ВВ1 упоминал :)) поэтому ТОЧКА А РАВНОУДАЛЕНА ОТ СЕ и СА1. То есть она лежит на биссектрисе угла А1СЕ, и СЕ = А1С :)) (элегантно :) я доказал равенство углов А1СА и АСЕ, не рассматривая какие-то дуги, а просто воспользовался определением биссектрисы... хотя, конечно, дуги АС и АК равны).

Итак, АА1 = АЕ, ВЕ = ВВ1.

Ну, если это сложить, получится то, что требуется в задаче.

 

Если отобразить А1В1ВА симметрично относительно А1В1, то получится равнобедренная трапеция, у которой ЦЕНТР ВПИСАННОЙ ОКРУЖНОСТИ лежит в точке С.

(69.9k баллов)