ОДЗ:
0" alt="\frac{x}{y} > 0" align="absmiddle" class="latex-formula">
Пусть
0)" alt="\sqrt{\frac{x}{y}}=t \Rightarrow \sqrt{\frac{y}{x}}=\frac{1}{t} (t>0)" align="absmiddle" class="latex-formula">
Решим первое уравнение:
![t-\frac{1}{t}=\frac{3}{2} |*2t \\ 2t^2-3t-2=0\\D=9+4*2*2=25=5^2\\t_{1}=\frac{3+5}{4}=2; t_{2}=\frac{3-5}{4}=-\frac{1}{2} t-\frac{1}{t}=\frac{3}{2} |*2t \\ 2t^2-3t-2=0\\D=9+4*2*2=25=5^2\\t_{1}=\frac{3+5}{4}=2; t_{2}=\frac{3-5}{4}=-\frac{1}{2}](https://tex.z-dn.net/?f=t-%5Cfrac%7B1%7D%7Bt%7D%3D%5Cfrac%7B3%7D%7B2%7D%20%7C%2A2t%20%5C%5C%202t%5E2-3t-2%3D0%5C%5CD%3D9%2B4%2A2%2A2%3D25%3D5%5E2%5C%5Ct_%7B1%7D%3D%5Cfrac%7B3%2B5%7D%7B4%7D%3D2%3B%20t_%7B2%7D%3D%5Cfrac%7B3-5%7D%7B4%7D%3D-%5Cfrac%7B1%7D%7B2%7D)
t₂ не удовлетворяет условию t > 0.
![\sqrt{\frac{x}{y}}=2 \Rightarrow \frac{x}{y} =4 \Rightarrow x=4y \sqrt{\frac{x}{y}}=2 \Rightarrow \frac{x}{y} =4 \Rightarrow x=4y](https://tex.z-dn.net/?f=%5Csqrt%7B%5Cfrac%7Bx%7D%7By%7D%7D%3D2%20%5CRightarrow%20%5Cfrac%7Bx%7D%7By%7D%20%3D4%20%5CRightarrow%20x%3D4y)
Подставляем во второе уравнение:
![4y+y+4y*y=9\\4y^2+5y-9=0\\D=25+4*4*9=169=13^2\\y_{1}=\frac{-5+13}{8}=1; y_{2}=\frac{-5-13}{8}=-\frac{9}{4} 4y+y+4y*y=9\\4y^2+5y-9=0\\D=25+4*4*9=169=13^2\\y_{1}=\frac{-5+13}{8}=1; y_{2}=\frac{-5-13}{8}=-\frac{9}{4}](https://tex.z-dn.net/?f=4y%2By%2B4y%2Ay%3D9%5C%5C4y%5E2%2B5y-9%3D0%5C%5CD%3D25%2B4%2A4%2A9%3D169%3D13%5E2%5C%5Cy_%7B1%7D%3D%5Cfrac%7B-5%2B13%7D%7B8%7D%3D1%3B%20y_%7B2%7D%3D%5Cfrac%7B-5-13%7D%7B8%7D%3D-%5Cfrac%7B9%7D%7B4%7D)
При
![x=4*1=4 x=4*1=4](https://tex.z-dn.net/?f=x%3D4%2A1%3D4)
При
![x=-9 x=-9](https://tex.z-dn.net/?f=x%3D-9)
Ответ: ![(4; 1), (-9; -\frac{9}{4}) (4; 1), (-9; -\frac{9}{4})](https://tex.z-dn.net/?f=%284%3B%201%29%2C%20%28-9%3B%20-%5Cfrac%7B9%7D%7B4%7D%29)