![1) \ \text{lg}(2x-1) = 3(\text{lg}4 - \text{lg}2) 1) \ \text{lg}(2x-1) = 3(\text{lg}4 - \text{lg}2)](https://tex.z-dn.net/?f=1%29%20%5C%20%5Ctext%7Blg%7D%282x-1%29%20%3D%203%28%5Ctext%7Blg%7D4%20-%20%5Ctext%7Blg%7D2%29)
ОДЗ:
0\\2x > 1\\x > 0,5" alt="2x - 1 > 0\\2x > 1\\x > 0,5" align="absmiddle" class="latex-formula">
![\text{lg}(2x - 1) = 3\text{lg}4 - 3\text{lg}2\\\text{lg}(2x - 1)= \text{lg}4^{3} - \text{lg}2^{3}\\\text{lg}(2x - 1) = \text{lg}64 - \text{lg}8\\\text{lg}(2x - 1) = \text{lg}\dfrac{64}{8}\\\text{lg}(2x - 1) = \text{lg} 8\\2x - 1 = 8\\2x = 9\\x = 4,5 \text{lg}(2x - 1) = 3\text{lg}4 - 3\text{lg}2\\\text{lg}(2x - 1)= \text{lg}4^{3} - \text{lg}2^{3}\\\text{lg}(2x - 1) = \text{lg}64 - \text{lg}8\\\text{lg}(2x - 1) = \text{lg}\dfrac{64}{8}\\\text{lg}(2x - 1) = \text{lg} 8\\2x - 1 = 8\\2x = 9\\x = 4,5](https://tex.z-dn.net/?f=%5Ctext%7Blg%7D%282x%20-%201%29%20%3D%203%5Ctext%7Blg%7D4%20-%203%5Ctext%7Blg%7D2%5C%5C%5Ctext%7Blg%7D%282x%20-%201%29%3D%20%5Ctext%7Blg%7D4%5E%7B3%7D%20-%20%5Ctext%7Blg%7D2%5E%7B3%7D%5C%5C%5Ctext%7Blg%7D%282x%20-%201%29%20%3D%20%5Ctext%7Blg%7D64%20-%20%5Ctext%7Blg%7D8%5C%5C%5Ctext%7Blg%7D%282x%20-%201%29%20%3D%20%5Ctext%7Blg%7D%5Cdfrac%7B64%7D%7B8%7D%5C%5C%5Ctext%7Blg%7D%282x%20-%201%29%20%3D%20%5Ctext%7Blg%7D%208%5C%5C2x%20-%201%20%3D%208%5C%5C2x%20%3D%209%5C%5Cx%20%3D%204%2C5)
Ответ: ![x = 4,5 x = 4,5](https://tex.z-dn.net/?f=x%20%3D%204%2C5)
![2) \ \text{log}_{2}(x^{2} + 4x + 3) = 3 2) \ \text{log}_{2}(x^{2} + 4x + 3) = 3](https://tex.z-dn.net/?f=2%29%20%5C%20%5Ctext%7Blog%7D_%7B2%7D%28x%5E%7B2%7D%20%2B%204x%20%2B%203%29%20%3D%203)
ОДЗ:
0" alt="x^{2} + 4x + 3 > 0" align="absmiddle" class="latex-formula"> (это неравенство можно решить методом интервалов, но это "труднее", чем решить само логарифмическое уравнение; в результате нужно подставить полученный ответ в неравенство и проверить его истинность).
![\text{log}_{2}(x^{2} + 4x + 3) = \text{log}_{2}2^{3}\\\text{log}_{2}(x^{2} + 4x + 3) = \text{log}_{2}8\\x^{2} + 4x + 3 = 8\\x^{2} + 4x - 5 = 0\\x_{1} = -5; \ x_{2} = 1 \text{log}_{2}(x^{2} + 4x + 3) = \text{log}_{2}2^{3}\\\text{log}_{2}(x^{2} + 4x + 3) = \text{log}_{2}8\\x^{2} + 4x + 3 = 8\\x^{2} + 4x - 5 = 0\\x_{1} = -5; \ x_{2} = 1](https://tex.z-dn.net/?f=%5Ctext%7Blog%7D_%7B2%7D%28x%5E%7B2%7D%20%2B%204x%20%2B%203%29%20%3D%20%5Ctext%7Blog%7D_%7B2%7D2%5E%7B3%7D%5C%5C%5Ctext%7Blog%7D_%7B2%7D%28x%5E%7B2%7D%20%2B%204x%20%2B%203%29%20%3D%20%5Ctext%7Blog%7D_%7B2%7D8%5C%5Cx%5E%7B2%7D%20%2B%204x%20%2B%203%20%3D%208%5C%5Cx%5E%7B2%7D%20%2B%204x%20-%205%20%3D%200%5C%5Cx_%7B1%7D%20%3D%20-5%3B%20%5C%20x_%7B2%7D%20%3D%201)
Подставляем полученные ответы в ОДЗ и проверяем их истинность:
0" alt="1) \ (-5)^{2} + 4 \ \cdotp (-5) + 3 = 25 - 20 + 3 = 8 > 0" align="absmiddle" class="latex-formula"> (подходит)
0" alt="2) \ 1^{2} + 4 \ \cdotp 1 + 3 = 1 + 4 + 3 = 9>0" align="absmiddle" class="latex-formula"> (подходит)
Ответ: ![x_{1} = -5; \ x_{2} = 1 x_{1} = -5; \ x_{2} = 1](https://tex.z-dn.net/?f=x_%7B1%7D%20%3D%20-5%3B%20%5C%20x_%7B2%7D%20%3D%201)
![3) \ \text{log}_{3}^{2}x - 3\text{log}_{3}x = -2\\\text{log}_{3}^{2}x - 3\text{log}_{3}x + 2 = 0 3) \ \text{log}_{3}^{2}x - 3\text{log}_{3}x = -2\\\text{log}_{3}^{2}x - 3\text{log}_{3}x + 2 = 0](https://tex.z-dn.net/?f=3%29%20%5C%20%5Ctext%7Blog%7D_%7B3%7D%5E%7B2%7Dx%20-%203%5Ctext%7Blog%7D_%7B3%7Dx%20%3D%20-2%5C%5C%5Ctext%7Blog%7D_%7B3%7D%5E%7B2%7Dx%20-%203%5Ctext%7Blog%7D_%7B3%7Dx%20%2B%202%20%3D%200)
Замена: ![\text{log}_{3}x = t \text{log}_{3}x = t](https://tex.z-dn.net/?f=%5Ctext%7Blog%7D_%7B3%7Dx%20%3D%20t)
![t^{2} - 3t + 2 = 0\\t_{1} = 1; \ t_{2} = 2 t^{2} - 3t + 2 = 0\\t_{1} = 1; \ t_{2} = 2](https://tex.z-dn.net/?f=t%5E%7B2%7D%20-%203t%20%2B%202%20%3D%200%5C%5Ct_%7B1%7D%20%3D%201%3B%20%5C%20t_%7B2%7D%20%3D%202)
Обратная замена:
![1) \ \text{log}_{3}x = 1\\x = 3 1) \ \text{log}_{3}x = 1\\x = 3](https://tex.z-dn.net/?f=1%29%20%5C%20%5Ctext%7Blog%7D_%7B3%7Dx%20%3D%201%5C%5Cx%20%3D%203)
![2) \ \text{log}_{3}x = 2\\x = 9 2) \ \text{log}_{3}x = 2\\x = 9](https://tex.z-dn.net/?f=2%29%20%5C%20%5Ctext%7Blog%7D_%7B3%7Dx%20%3D%202%5C%5Cx%20%3D%209)
Ответ: ![x_{1} = 3; \ x_{2} = 9 x_{1} = 3; \ x_{2} = 9](https://tex.z-dn.net/?f=x_%7B1%7D%20%3D%203%3B%20%5C%20x_%7B2%7D%20%3D%209)