Дано АВСД - параллелограмм
АВ=СД ВС=АД (противоположные стороны равны)
АВIIСД ВСII АД (противоположные стороны параллельны)
АК-биссектриса угол ВАК=уголКАД (делит угол пополам)
ВК=4см КС=3см ВС=ВК+КС
Найти АВ СД ВС АД
Решение
Биссектриса угла А образует треугольник АВК углы КАД и ВКА - накрест лежащие углы при параллельных прямых. А так как ВАК=КАД, то и
уголВАК=уголВКА (можно просто запомнить, что биссектриса угла параллелограмма отсекает равнобедренный треугольник) .
Углы при основании равны треугольник равнобедренный.
В треугольнике АВК АВ=ВК=4см
АВ=СД=4 см ВС=4+3=7 ВС=АД=7
Ответ АВ=СД=4 ВС=АД=7