Найти наибольшее и наименьшее значение функции F(x)=sin2x-x на интервале [-пи/2;пи/2]
В точках экстремума, первая производная=0
Производная сложной функции = произведению промежуточных элементарных функций
F'(x)=(sin2x-x)'=2cos2x-1=0
cos2x=1/2
2π
2x= + - --------- + 2πn, n∈Z
3
Общее решение
π
x= + - --------- + πn, n∈Z
3
на интервале [-пи/2;пи/2]
π
x1 = - ---------
3
π
x2 = ---------
3
наибольшее и наименьшее значение функции F(x)=sin2x-x
F(-π/3)=sin(-2π/3)+π/3=-√3/2 + π/3 - min функции
F(π/3)=sin(2π/3)-π/3=√3/2 - π/3 - max функции