1.
1\\\sin x=\dfrac{1-\sqrt{17}}{4}\Rightarrow \boxed{x=(-1)^k\arcsin\frac{1-\sqrt{17}}{4}+\pi k, \ k\in Z}" alt="2\sin^2x-\sin x-2=0\\D=(-1)^2-4\cdot2\cdot(-2)=17\\\sin x\neq \dfrac{1+\sqrt{17}}{4}>1\\\sin x=\dfrac{1-\sqrt{17}}{4}\Rightarrow \boxed{x=(-1)^k\arcsin\frac{1-\sqrt{17}}{4}+\pi k, \ k\in Z}" align="absmiddle" class="latex-formula">
2.
![\sin2x-\cos x=0\\2\sin x\cos x-\cos x=0\\\cos x(2\sin x-1)=0\\\cos x=0\Rightarrow \boxed{x_1=\dfrac{\pi}{2} +\pi n, \ n\in Z}\\2\sin x-1=0\Rightarrow \sin x=\dfrac{1}{2} \Rightarrow \boxed{x_2=(-1)^k\dfrac{\pi}{6} +\pi k, \ k\in Z}\\ \sin2x-\cos x=0\\2\sin x\cos x-\cos x=0\\\cos x(2\sin x-1)=0\\\cos x=0\Rightarrow \boxed{x_1=\dfrac{\pi}{2} +\pi n, \ n\in Z}\\2\sin x-1=0\Rightarrow \sin x=\dfrac{1}{2} \Rightarrow \boxed{x_2=(-1)^k\dfrac{\pi}{6} +\pi k, \ k\in Z}\\](https://tex.z-dn.net/?f=%5Csin2x-%5Ccos%20x%3D0%5C%5C2%5Csin%20x%5Ccos%20x-%5Ccos%20x%3D0%5C%5C%5Ccos%20x%282%5Csin%20x-1%29%3D0%5C%5C%5Ccos%20x%3D0%5CRightarrow%20%5Cboxed%7Bx_1%3D%5Cdfrac%7B%5Cpi%7D%7B2%7D%20%2B%5Cpi%20n%2C%20%5C%20n%5Cin%20Z%7D%5C%5C2%5Csin%20x-1%3D0%5CRightarrow%20%5Csin%20x%3D%5Cdfrac%7B1%7D%7B2%7D%20%5CRightarrow%20%5Cboxed%7Bx_2%3D%28-1%29%5Ek%5Cdfrac%7B%5Cpi%7D%7B6%7D%20%2B%5Cpi%20k%2C%20%5C%20k%5Cin%20Z%7D%5C%5C)
3.
![\cos7x+\cos x=0\\\\2\cos\dfrac{7x+x}{2}\cos\dfrac{7x-x}{2}=0\\\\2\cos4x\cos3x=0\\\cos4x=0\Rightarrow 4x=\dfrac{\pi}{2} +\pi n \Rightarrow \boxed{x_1=\dfrac{\pi}{8} +\frac{\pi n}{4}, \ n\in Z}\\\cos3x=0\Rightarrow 3x=\dfrac{\pi}{2} +\pi n \Rightarrow \boxed{x_2=\dfrac{\pi}{6} +\frac{\pi n}{3}, \ n\in Z } \cos7x+\cos x=0\\\\2\cos\dfrac{7x+x}{2}\cos\dfrac{7x-x}{2}=0\\\\2\cos4x\cos3x=0\\\cos4x=0\Rightarrow 4x=\dfrac{\pi}{2} +\pi n \Rightarrow \boxed{x_1=\dfrac{\pi}{8} +\frac{\pi n}{4}, \ n\in Z}\\\cos3x=0\Rightarrow 3x=\dfrac{\pi}{2} +\pi n \Rightarrow \boxed{x_2=\dfrac{\pi}{6} +\frac{\pi n}{3}, \ n\in Z }](https://tex.z-dn.net/?f=%5Ccos7x%2B%5Ccos%20x%3D0%5C%5C%5C%5C2%5Ccos%5Cdfrac%7B7x%2Bx%7D%7B2%7D%5Ccos%5Cdfrac%7B7x-x%7D%7B2%7D%3D0%5C%5C%5C%5C2%5Ccos4x%5Ccos3x%3D0%5C%5C%5Ccos4x%3D0%5CRightarrow%204x%3D%5Cdfrac%7B%5Cpi%7D%7B2%7D%20%2B%5Cpi%20n%20%5CRightarrow%20%5Cboxed%7Bx_1%3D%5Cdfrac%7B%5Cpi%7D%7B8%7D%20%2B%5Cfrac%7B%5Cpi%20n%7D%7B4%7D%2C%20%5C%20n%5Cin%20Z%7D%5C%5C%5Ccos3x%3D0%5CRightarrow%203x%3D%5Cdfrac%7B%5Cpi%7D%7B2%7D%20%2B%5Cpi%20n%20%5CRightarrow%20%5Cboxed%7Bx_2%3D%5Cdfrac%7B%5Cpi%7D%7B6%7D%20%2B%5Cfrac%7B%5Cpi%20n%7D%7B3%7D%2C%20%5C%20n%5Cin%20Z%20%7D)
4.
![\mathrm{tg}x-2\mathrm{ctg}x=0 \ (\sin x\neq 0; \cos x\neq 0) \\\mathrm{tg}x-\dfrac{2}{\mathrm{tg}x}=0\\\mathrm{tg}^2x-2=0\\\mathrm{tg}^2x=2\\\mathrm{tg}x=\pm\sqrt{2} \\\boxed{x=\pm\mathrm{arctg}\sqrt{2}+\pi n, \ n\in Z} \mathrm{tg}x-2\mathrm{ctg}x=0 \ (\sin x\neq 0; \cos x\neq 0) \\\mathrm{tg}x-\dfrac{2}{\mathrm{tg}x}=0\\\mathrm{tg}^2x-2=0\\\mathrm{tg}^2x=2\\\mathrm{tg}x=\pm\sqrt{2} \\\boxed{x=\pm\mathrm{arctg}\sqrt{2}+\pi n, \ n\in Z}](https://tex.z-dn.net/?f=%5Cmathrm%7Btg%7Dx-2%5Cmathrm%7Bctg%7Dx%3D0%20%5C%20%28%5Csin%20x%5Cneq%200%3B%20%5Ccos%20x%5Cneq%200%29%20%5C%5C%5Cmathrm%7Btg%7Dx-%5Cdfrac%7B2%7D%7B%5Cmathrm%7Btg%7Dx%7D%3D0%5C%5C%5Cmathrm%7Btg%7D%5E2x-2%3D0%5C%5C%5Cmathrm%7Btg%7D%5E2x%3D2%5C%5C%5Cmathrm%7Btg%7Dx%3D%5Cpm%5Csqrt%7B2%7D%20%5C%5C%5Cboxed%7Bx%3D%5Cpm%5Cmathrm%7Barctg%7D%5Csqrt%7B2%7D%2B%5Cpi%20n%2C%20%5C%20n%5Cin%20Z%7D)