Треугольник со сторонами 3 см, 4 см и 5 см согнули по его средним линиям и получили...

0 голосов
105 просмотров

Треугольник со сторонами 3 см, 4 см и 5 см согнули по его средним линиям и получили модель тетраэдра. Тогда площадь каждой грани тетраэдра равна…


Геометрия (15 баллов) | 105 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

 Средняя линия треугольника  соединяет середины двух сторон треугольника, параллельна и равна половине  третьей стороны. Средние линии делят исходный треугольника на 4 равных ( см. рисунок). Треугольник, образованный средними линиями треугольника, подобен исходному ( по равенству соответственных углов, образованных при пересечении параллельных средней линии и стороны треугольника секущей – стороной исходного треугольника). Коэффициент подобия k=1/2.  Треугольник со сторонами 3,4, 5 - египетский, т.е. прямоугольный. Его площадь - половина произведения катетов. S=3•4:2=6 см²

     Отношение площадей подобных треугольников равно квадрату коэффициента подобия. Если исходный треугольник АВС, а середины его сторон К, М, Н, то Ѕ(КМН)=1/4•Ѕ(АВС)=1,5 см²

 Каждый такой треугольник - грань развёртки тетраэдра. Площадь грани - 1,5 см²


image
(228k баллов)