Ответ:
1. Да.
2. Да.
3. Нет.
4. Да.
5. Нет.
Объяснение:
Признак перпендикулярности прямой и плоскости:
если прямая перпендикулярна двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна плоскости
1. Прямая, проведенная перпендикулярно двум диаметрам окружности, перпендикулярна плоскости окружности, так как диаметры пересекаются.
2. Прямая, проведенная перпендикулярно диагоналям прямоугольника
, перпендикулярна плоскости прямоугольника, так как диагонали пересекаются.
3. Нельзя утверждать, что прямая, проведенная перпендикулярно основаниям трапеции
, будет перпендикулярна плоскости трапеции, так как основания трапеции параллельны, т.е. не пересекаются.
4. Прямая, проведенная перпендикулярно сторонам ромба с общей вершиной
, перпендикулярна плоскости ромба, так как стороны пересекаются.
5. Нельзя утверждать, что прямая проведенная перпендикулярно двум сторонам параллелограмма, перпендикулярна плоскости параллелограмма, так как это могут быть противолежащие стороны параллелограмма, а они параллельны.