5^2*5^{2x^2-x-1}+5^{2x^2-x-1};\\26*3^{2x^2-x-1}>26*5^{2x^2-x-1};\\1>(\frac{5}{3})^{2x^2-x-1};\\(\frac{5}{3})^0>(\frac{5}{3})^{2x^2-x-1};" alt="\displaystyle 3^3*3^{2x^2-x-1}-3^{2x^2-x-1}>5^2*5^{2x^2-x-1}+5^{2x^2-x-1};\\26*3^{2x^2-x-1}>26*5^{2x^2-x-1};\\1>(\frac{5}{3})^{2x^2-x-1};\\(\frac{5}{3})^0>(\frac{5}{3})^{2x^2-x-1};" align="absmiddle" class="latex-formula">
0>2x²-x-1;
2x²-x-1<0;</p>
2x²-x-1=0;
D=1+4*2=9;
x=(1+3)/4=1;
x=(1-3)/4=-0,5;
+ - +
___-0,5____1____
x ∈ (-0,5;1);