1. а) Стандартный вид числа a = 12 000 000 = ![12*10^6 12*10^6](https://tex.z-dn.net/?f=12%2A10%5E6)
б) ![\frac{(5a/6)^{-2}*2a^3*(4/5)^0}{(1.2a)^2*a^{-3}}=\frac{(6/5a)^2*2a^6}{(6a/5)^2}=\frac{2a^6}{a^4}=2a^2 \frac{(5a/6)^{-2}*2a^3*(4/5)^0}{(1.2a)^2*a^{-3}}=\frac{(6/5a)^2*2a^6}{(6a/5)^2}=\frac{2a^6}{a^4}=2a^2](https://tex.z-dn.net/?f=%5Cfrac%7B%285a%2F6%29%5E%7B-2%7D%2A2a%5E3%2A%284%2F5%29%5E0%7D%7B%281.2a%29%5E2%2Aa%5E%7B-3%7D%7D%3D%5Cfrac%7B%286%2F5a%29%5E2%2A2a%5E6%7D%7B%286a%2F5%29%5E2%7D%3D%5Cfrac%7B2a%5E6%7D%7Ba%5E4%7D%3D2a%5E2)
в) ![2a^2 = 2(12*10^6)^2 = 288*10^{12} 2a^2 = 2(12*10^6)^2 = 288*10^{12}](https://tex.z-dn.net/?f=2a%5E2%20%3D%202%2812%2A10%5E6%29%5E2%20%3D%20288%2A10%5E%7B12%7D)
2. а) Знаменатель дроби не может обращаться в 0, следовательно:
![x+3\neq 0\\x\neq -3 x+3\neq 0\\x\neq -3](https://tex.z-dn.net/?f=x%2B3%5Cneq%200%5C%5Cx%5Cneq%20-3)
б) Аналогично поступаем и со второй дробью:
![4y-2-2y^2\neq 0\\y^2-2y+1\neq 0\\(y-1)^2\neq 0\\y\neq 1 4y-2-2y^2\neq 0\\y^2-2y+1\neq 0\\(y-1)^2\neq 0\\y\neq 1](https://tex.z-dn.net/?f=4y-2-2y%5E2%5Cneq%200%5C%5Cy%5E2-2y%2B1%5Cneq%200%5C%5C%28y-1%29%5E2%5Cneq%200%5C%5Cy%5Cneq%201)
3. Упростим выражение:
![(p+1-\frac{1}{1-p}):(p-\frac{p^2}{p-1})=(\frac{(1+p)(1-p)-1}{1-p}):(\frac{p(p-1)-p^2}{p-1})=(\frac{-p^2}{1-p}):(\frac{-p}{p-1})=\frac{(-p^2)(p-1)}{(-p)(1-p)}=-p (p+1-\frac{1}{1-p}):(p-\frac{p^2}{p-1})=(\frac{(1+p)(1-p)-1}{1-p}):(\frac{p(p-1)-p^2}{p-1})=(\frac{-p^2}{1-p}):(\frac{-p}{p-1})=\frac{(-p^2)(p-1)}{(-p)(1-p)}=-p](https://tex.z-dn.net/?f=%28p%2B1-%5Cfrac%7B1%7D%7B1-p%7D%29%3A%28p-%5Cfrac%7Bp%5E2%7D%7Bp-1%7D%29%3D%28%5Cfrac%7B%281%2Bp%29%281-p%29-1%7D%7B1-p%7D%29%3A%28%5Cfrac%7Bp%28p-1%29-p%5E2%7D%7Bp-1%7D%29%3D%28%5Cfrac%7B-p%5E2%7D%7B1-p%7D%29%3A%28%5Cfrac%7B-p%7D%7Bp-1%7D%29%3D%5Cfrac%7B%28-p%5E2%29%28p-1%29%7D%7B%28-p%29%281-p%29%7D%3D-p)
4. Упростим выражение:
![\frac{b}{a-b}-\frac{a^3-ab^2}{a^2+b^2}*(\frac{a}{(a-b)^2}-\frac{b}{a^2-b^2})=\\=\frac{b}{a-b}-\frac{a(a^2-b^2)}{a^2+b^2}*(\frac{a^3-ab^2-a^2b+2ab^2-b^3}{(a-b)^2(a^2-b^2)})=\\=\frac{b}{a-b}-\frac{a}{a^2+b^2}*(\frac{(a^3-b^3)-ab(a-b)}{(a-b)})= \frac{b}{a-b}-\frac{a^3-ab^2}{a^2+b^2}*(\frac{a}{(a-b)^2}-\frac{b}{a^2-b^2})=\\=\frac{b}{a-b}-\frac{a(a^2-b^2)}{a^2+b^2}*(\frac{a^3-ab^2-a^2b+2ab^2-b^3}{(a-b)^2(a^2-b^2)})=\\=\frac{b}{a-b}-\frac{a}{a^2+b^2}*(\frac{(a^3-b^3)-ab(a-b)}{(a-b)})=](https://tex.z-dn.net/?f=%5Cfrac%7Bb%7D%7Ba-b%7D-%5Cfrac%7Ba%5E3-ab%5E2%7D%7Ba%5E2%2Bb%5E2%7D%2A%28%5Cfrac%7Ba%7D%7B%28a-b%29%5E2%7D-%5Cfrac%7Bb%7D%7Ba%5E2-b%5E2%7D%29%3D%5C%5C%3D%5Cfrac%7Bb%7D%7Ba-b%7D-%5Cfrac%7Ba%28a%5E2-b%5E2%29%7D%7Ba%5E2%2Bb%5E2%7D%2A%28%5Cfrac%7Ba%5E3-ab%5E2-a%5E2b%2B2ab%5E2-b%5E3%7D%7B%28a-b%29%5E2%28a%5E2-b%5E2%29%7D%29%3D%5C%5C%3D%5Cfrac%7Bb%7D%7Ba-b%7D-%5Cfrac%7Ba%7D%7Ba%5E2%2Bb%5E2%7D%2A%28%5Cfrac%7B%28a%5E3-b%5E3%29-ab%28a-b%29%7D%7B%28a-b%29%7D%29%3D)
![=\frac{b}{a-b}-\frac{a}{a^2+b^2}*(\frac{(a^2+b^2)}{(a-b)})=\frac{b}{a-b}-\frac{a}{a-b}=-1 =\frac{b}{a-b}-\frac{a}{a^2+b^2}*(\frac{(a^2+b^2)}{(a-b)})=\frac{b}{a-b}-\frac{a}{a-b}=-1](https://tex.z-dn.net/?f=%3D%5Cfrac%7Bb%7D%7Ba-b%7D-%5Cfrac%7Ba%7D%7Ba%5E2%2Bb%5E2%7D%2A%28%5Cfrac%7B%28a%5E2%2Bb%5E2%29%7D%7B%28a-b%29%7D%29%3D%5Cfrac%7Bb%7D%7Ba-b%7D-%5Cfrac%7Ba%7D%7Ba-b%7D%3D-1)
Т.к. получилась констанста, то выражение не зависит от переменных а и b. Доказано.