Найти произведение корней.
![\dfrac{17}{(x-3)(x+4)} - \dfrac{1}{x-3} = \dfrac{x}{x+4};\\\\\dfrac{17}{(x-3)(x+4)} - \dfrac{1}{x-3} - \dfrac{x}{x+4} = 0;\\\\\dfrac{17}{(x-3)(x+4)} - \left(\dfrac{1}{x-3} + \dfrac{x}{x+4}\right) = 0;\\\\\dfrac{17}{(x-3)(x+4)} - \dfrac{(x+4) + x(x-3)}{(x-3)(x+4)} = 0;\\\\\dfrac{17}{(x-3)(x+4)} - \dfrac{x + 4 + x^2 - 3x}{(x-3)(x+4)} = 0;\\\\\dfrac{17-(x^2 - 2x + 4)}{(x-3)(x+4)} = 0;\\\\\dfrac{17 - x^2 + 2x - 4}{(x-3)(x-4)} = 0;\\\\\dfrac{-(x^2 - 2x - 13)}{(x-3)(x-4)} = 0. \dfrac{17}{(x-3)(x+4)} - \dfrac{1}{x-3} = \dfrac{x}{x+4};\\\\\dfrac{17}{(x-3)(x+4)} - \dfrac{1}{x-3} - \dfrac{x}{x+4} = 0;\\\\\dfrac{17}{(x-3)(x+4)} - \left(\dfrac{1}{x-3} + \dfrac{x}{x+4}\right) = 0;\\\\\dfrac{17}{(x-3)(x+4)} - \dfrac{(x+4) + x(x-3)}{(x-3)(x+4)} = 0;\\\\\dfrac{17}{(x-3)(x+4)} - \dfrac{x + 4 + x^2 - 3x}{(x-3)(x+4)} = 0;\\\\\dfrac{17-(x^2 - 2x + 4)}{(x-3)(x+4)} = 0;\\\\\dfrac{17 - x^2 + 2x - 4}{(x-3)(x-4)} = 0;\\\\\dfrac{-(x^2 - 2x - 13)}{(x-3)(x-4)} = 0.](https://tex.z-dn.net/?f=%5Cdfrac%7B17%7D%7B%28x-3%29%28x%2B4%29%7D%20-%20%5Cdfrac%7B1%7D%7Bx-3%7D%20%3D%20%5Cdfrac%7Bx%7D%7Bx%2B4%7D%3B%5C%5C%5C%5C%5Cdfrac%7B17%7D%7B%28x-3%29%28x%2B4%29%7D%20-%20%5Cdfrac%7B1%7D%7Bx-3%7D%20-%20%5Cdfrac%7Bx%7D%7Bx%2B4%7D%20%3D%200%3B%5C%5C%5C%5C%5Cdfrac%7B17%7D%7B%28x-3%29%28x%2B4%29%7D%20-%20%5Cleft%28%5Cdfrac%7B1%7D%7Bx-3%7D%20%2B%20%5Cdfrac%7Bx%7D%7Bx%2B4%7D%5Cright%29%20%3D%200%3B%5C%5C%5C%5C%5Cdfrac%7B17%7D%7B%28x-3%29%28x%2B4%29%7D%20-%20%5Cdfrac%7B%28x%2B4%29%20%2B%20x%28x-3%29%7D%7B%28x-3%29%28x%2B4%29%7D%20%3D%200%3B%5C%5C%5C%5C%5Cdfrac%7B17%7D%7B%28x-3%29%28x%2B4%29%7D%20-%20%5Cdfrac%7Bx%20%2B%204%20%2B%20x%5E2%20-%203x%7D%7B%28x-3%29%28x%2B4%29%7D%20%3D%200%3B%5C%5C%5C%5C%5Cdfrac%7B17-%28x%5E2%20-%202x%20%2B%204%29%7D%7B%28x-3%29%28x%2B4%29%7D%20%3D%200%3B%5C%5C%5C%5C%5Cdfrac%7B17%20-%20x%5E2%20%2B%202x%20-%204%7D%7B%28x-3%29%28x-4%29%7D%20%3D%200%3B%5C%5C%5C%5C%5Cdfrac%7B-%28x%5E2%20-%202x%20-%2013%29%7D%7B%28x-3%29%28x-4%29%7D%20%3D%200.)
Дробь равна нулю, когда её числитель равен нулю. Знаменатель можем отбросить, предварительно записав ОДЗ, ведь знаменатель не может быть равен нулю: ![(x-3)(x-4) \neq 0 \Longleftrightarrow x \neq 3; x \neq 4. (x-3)(x-4) \neq 0 \Longleftrightarrow x \neq 3; x \neq 4.](https://tex.z-dn.net/?f=%28x-3%29%28x-4%29%20%5Cneq%200%20%5CLongleftrightarrow%20x%20%5Cneq%203%3B%20x%20%5Cneq%204.)
Теперь найдём значения x, при которых числитель обращается в ноль.
![-(x^2 - 2x - 13) = 0;\\x^2 - 2x - 13 = 0;\\D = [b^2 - 4ac] = (-2)^2 - 4*a*(-13) = 4 + 52 = 56 = (2\sqrt{14})^2;\\x_{1_2} = \left[\dfrac{-b\pm \sqrt{D}}{2a}\right] = \dfrac{2\pm 2\sqrt{14}}{2} = 1\pm \sqrt{14} = \left[\begin{array}{ccc}1 + \sqrt{14},\\1 - \sqrt{14}.\end{array} -(x^2 - 2x - 13) = 0;\\x^2 - 2x - 13 = 0;\\D = [b^2 - 4ac] = (-2)^2 - 4*a*(-13) = 4 + 52 = 56 = (2\sqrt{14})^2;\\x_{1_2} = \left[\dfrac{-b\pm \sqrt{D}}{2a}\right] = \dfrac{2\pm 2\sqrt{14}}{2} = 1\pm \sqrt{14} = \left[\begin{array}{ccc}1 + \sqrt{14},\\1 - \sqrt{14}.\end{array}](https://tex.z-dn.net/?f=-%28x%5E2%20-%202x%20-%2013%29%20%3D%200%3B%5C%5Cx%5E2%20-%202x%20-%2013%20%3D%200%3B%5C%5CD%20%3D%20%5Bb%5E2%20-%204ac%5D%20%3D%20%28-2%29%5E2%20-%204%2Aa%2A%28-13%29%20%3D%204%20%2B%2052%20%3D%2056%20%3D%20%282%5Csqrt%7B14%7D%29%5E2%3B%5C%5Cx_%7B1_2%7D%20%3D%20%5Cleft%5B%5Cdfrac%7B-b%5Cpm%20%5Csqrt%7BD%7D%7D%7B2a%7D%5Cright%5D%20%3D%20%5Cdfrac%7B2%5Cpm%202%5Csqrt%7B14%7D%7D%7B2%7D%20%3D%201%5Cpm%20%5Csqrt%7B14%7D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%20%2B%20%5Csqrt%7B14%7D%2C%5C%5C1%20-%20%5Csqrt%7B14%7D.%5Cend%7Barray%7D)
Оба корня удовлетворяют ОДЗ. Теперь найдём произведение корней (не забываем про разность квадратов!!).
![(1 + \sqrt{14})(1 - \sqrt{14}) = 1^2 - (\sqrt{14})^2 = 1 - 14 = \bf\underline{-13}. (1 + \sqrt{14})(1 - \sqrt{14}) = 1^2 - (\sqrt{14})^2 = 1 - 14 = \bf\underline{-13}.](https://tex.z-dn.net/?f=%281%20%2B%20%5Csqrt%7B14%7D%29%281%20-%20%5Csqrt%7B14%7D%29%20%3D%201%5E2%20-%20%28%5Csqrt%7B14%7D%29%5E2%20%3D%201%20-%2014%20%3D%20%5Cbf%5Cunderline%7B-13%7D.)
Ответ: -13.