Восьмое. Вычислить опрелеленный интеграл.
∫xcosxdx|0;pi/2|=x*sinx|0;pi/2|-∫sinxdx|0;pi/2|=pi/2–1
∫fdg=fg-∫gdf
f=x dg=cosxdx
df=dx g=sinx
xsinx|0;pi/2|=1/2*pi*sin(pi/2)-0*sin(0)=pi/2
cosx|0;pi/2|=cos(pi/2)-cos(0)=-1