1) 2 sinx - 3(1-sin^2 x) +2=0
2 sin x - 3 +3sin^2 x +2=0
3 sin^2 x +2sinx -1=0
sin x =t
3t^2 + 2t-1=0
a+c=b 3-1=2
t1=-1
t2=1/3
sin x= -1
x= -п/2 + 2пn
sin x=1/3
x=(-1)^n * arcsin1/3 + пn
2) разделить на cos^2 x
5tg^2 x -3tgx-2=0
tgx=t
5t^2 -3t-2=0
a+b+c=0 5-3-2=0
t1=1 t2=-2/5
tgx=1 tgx=-2/5
x=п/4 +пn x=arctg(-2/5) + пn