Найдите отношение площадей двух правильных шестиугольников - вписанного в окружность и...

0 голосов
206 просмотров

Найдите отношение площадей двух правильных шестиугольников - вписанного в окружность и описанного около нее. Если можно, дайте пожалуйста более полный ответ. А то я совсем не знаю как решить эту задачу


Геометрия (29 баллов) | 206 просмотров
Дан 1 ответ
0 голосов
Правильный ответ


Сторона правильного шестиугольника, вписанного в окружность, равна стороне одного из 6 правильных треугольников, сторона которых равна радиусу описанной окружности. Пусть она равна
а
Сторона правильного шестиугольника, описанного вокруг окружности того же радиуса, равна
2(а√3):3
Отношение этих сторон ( крэффициент подобия) равно
а:2(а√3):3=3а:2(а√3)
Таков же коэффициент подобия их периметров.
Отношение площадей многоугольников равно квадрату коэффициента их подобия.
(3а:2(а√3 )²=

9а²:4а²3

=3/4

(228k баллов)