Рассмотрим ΔАВЕ - равнобедренный, т.к. ∠ВАЕ=∠ДАЕ по условию, ∠АЕВ=∠ЕАД как внутренние накрест лежащие при АД║ВЕ.
Таким образом ВН - не только биссектриса, но и высота ΔАВЕ.
Проведем высоты ВК и СМ. КМ=ВС=2 см, АК=МД=(10-2):2=4 см.
Рассмотрим ΔАВН - прямоугольный. Косинус ∠ВАК=АК\АВ=4\5=0,8. Значит, ∠ВАК=36°.
Тогда ∠ВАН=36:2=18°.
По теореме синусов ВН=АВ*sin18°=5*0,309=1,545 см.
Квадрат этой величины составляет 1,545²=2,387.
В ответ запишем 2,4.