Пусть О центр окружности, тогда. Пусть ОК- перпендикуляр к ВС,
ОК и есть радиус треугольника.
Треугольники ОВС и КВО подобные, так как они оба прямоугольные, а угол В у них общий, тогда,
ОК/ВО=ОС/ВС
ОС=6/2=3, ток как центр полувписаного круга делит пополам(равнобедренный ведь треугольник)
ВО^2=BC^2-OC^2=25-9=16
тогда,
ОК=ОВ*ОС/ВС=4*3/5=12/5.
Тоесть радиус = 12/15.
А далее расмотрим треугольник ВОК.
BK^2=BO^2-OK^2=16-144/25=(400-144)/25=256/25=((16/5)^2
BK=16/5
КС=5-16/5=(25-16)/5=9/5
Ответ: радиус 12/5, делит на отрезки, возле основы 9/5, возле вершины 16/5