Решить систему уравнений.
![\begin{cases}\sqrt[3]{x} + \sqrt[3]{y} = 4,\\x + y = 28.\end{cases} \begin{cases}\sqrt[3]{x} + \sqrt[3]{y} = 4,\\x + y = 28.\end{cases}](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7D%5Csqrt%5B3%5D%7Bx%7D%20%2B%20%5Csqrt%5B3%5D%7By%7D%20%3D%204%2C%5C%5Cx%20%2B%20y%20%3D%2028.%5Cend%7Bcases%7D)
Второе уравнение системы распишем, как сумму кубов.
![\begin{cases}\sqrt[3]{x} + \sqrt[3]{y} = 4,\\\left(\sqrt[3]{x} + \sqrt[3]{y}\right)\left(\sqrt[3]{x^2} - \sqrt[3]{xy} + \sqrt[3]{y^2}\right) = 28.\end{cases} \begin{cases}\sqrt[3]{x} + \sqrt[3]{y} = 4,\\\left(\sqrt[3]{x} + \sqrt[3]{y}\right)\left(\sqrt[3]{x^2} - \sqrt[3]{xy} + \sqrt[3]{y^2}\right) = 28.\end{cases}](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7D%5Csqrt%5B3%5D%7Bx%7D%20%2B%20%5Csqrt%5B3%5D%7By%7D%20%3D%204%2C%5C%5C%5Cleft%28%5Csqrt%5B3%5D%7Bx%7D%20%2B%20%5Csqrt%5B3%5D%7By%7D%5Cright%29%5Cleft%28%5Csqrt%5B3%5D%7Bx%5E2%7D%20-%20%5Csqrt%5B3%5D%7Bxy%7D%20%2B%20%5Csqrt%5B3%5D%7By%5E2%7D%5Cright%29%20%3D%2028.%5Cend%7Bcases%7D)
Подставим первое уравнение системы во второе.
![\begin{cases}\sqrt[3]{x} + \sqrt[3]{y} = 4,\\4*\left(\sqrt[3]{x^2} - \sqrt[3]{xy} + \sqrt[3]{y^2}\right) = 28;\end{cases} \begin{cases}\sqrt[3]{x} + \sqrt[3]{y} = 4,\\4*\left(\sqrt[3]{x^2} - \sqrt[3]{xy} + \sqrt[3]{y^2}\right) = 28;\end{cases}](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7D%5Csqrt%5B3%5D%7Bx%7D%20%2B%20%5Csqrt%5B3%5D%7By%7D%20%3D%204%2C%5C%5C4%2A%5Cleft%28%5Csqrt%5B3%5D%7Bx%5E2%7D%20-%20%5Csqrt%5B3%5D%7Bxy%7D%20%2B%20%5Csqrt%5B3%5D%7By%5E2%7D%5Cright%29%20%3D%2028%3B%5Cend%7Bcases%7D)
![\begin{cases}\sqrt[3]{x} + \sqrt[3]{y} = 4,\\\sqrt[3]{x^2} - \sqrt[3]{xy} + \sqrt[3]{y^2} = 7.\end{cases} \begin{cases}\sqrt[3]{x} + \sqrt[3]{y} = 4,\\\sqrt[3]{x^2} - \sqrt[3]{xy} + \sqrt[3]{y^2} = 7.\end{cases}](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7D%5Csqrt%5B3%5D%7Bx%7D%20%2B%20%5Csqrt%5B3%5D%7By%7D%20%3D%204%2C%5C%5C%5Csqrt%5B3%5D%7Bx%5E2%7D%20-%20%5Csqrt%5B3%5D%7Bxy%7D%20%2B%20%5Csqrt%5B3%5D%7By%5E2%7D%20%3D%207.%5Cend%7Bcases%7D)
Переделаем второе уравнение системы, чтобы получить разность квадратов.
![\begin{cases}\sqrt[3]{x} + \sqrt[3]{y} = 4,\\\left(\sqrt[3]{x^2} + 2\sqrt[3]{xy} + \sqrt[3]{y^2}\right) - 3\sqrt[3]{xy} = 7;\end{cases} \begin{cases}\sqrt[3]{x} + \sqrt[3]{y} = 4,\\\left(\sqrt[3]{x^2} + 2\sqrt[3]{xy} + \sqrt[3]{y^2}\right) - 3\sqrt[3]{xy} = 7;\end{cases}](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7D%5Csqrt%5B3%5D%7Bx%7D%20%2B%20%5Csqrt%5B3%5D%7By%7D%20%3D%204%2C%5C%5C%5Cleft%28%5Csqrt%5B3%5D%7Bx%5E2%7D%20%2B%202%5Csqrt%5B3%5D%7Bxy%7D%20%2B%20%5Csqrt%5B3%5D%7By%5E2%7D%5Cright%29%20-%203%5Csqrt%5B3%5D%7Bxy%7D%20%3D%207%3B%5Cend%7Bcases%7D)
![\begin{cases}\sqrt[3]{x} + \sqrt[3]{y} = 4,\\\left(\sqrt[3]{x} + \sqrt[3]{y}\right)^2 - 3\sqrt[3]{xy} = 7;\end{cases} \begin{cases}\sqrt[3]{x} + \sqrt[3]{y} = 4,\\\left(\sqrt[3]{x} + \sqrt[3]{y}\right)^2 - 3\sqrt[3]{xy} = 7;\end{cases}](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7D%5Csqrt%5B3%5D%7Bx%7D%20%2B%20%5Csqrt%5B3%5D%7By%7D%20%3D%204%2C%5C%5C%5Cleft%28%5Csqrt%5B3%5D%7Bx%7D%20%2B%20%5Csqrt%5B3%5D%7By%7D%5Cright%29%5E2%20-%203%5Csqrt%5B3%5D%7Bxy%7D%20%3D%207%3B%5Cend%7Bcases%7D)
Снова используем первое уравнение во втором.
![\begin{cases}\sqrt[3]{x} + \sqrt[3]{y} = 4,\\4^2 - 3\sqrt[3]{xy} = 7;\end{cases} \begin{cases}\sqrt[3]{x} + \sqrt[3]{y} = 4,\\4^2 - 3\sqrt[3]{xy} = 7;\end{cases}](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7D%5Csqrt%5B3%5D%7Bx%7D%20%2B%20%5Csqrt%5B3%5D%7By%7D%20%3D%204%2C%5C%5C4%5E2%20-%203%5Csqrt%5B3%5D%7Bxy%7D%20%3D%207%3B%5Cend%7Bcases%7D)
![\begin{cases}\sqrt[3]{x} + \sqrt[3]{y} = 4,\\-3\sqrt[3]{xy} = 7 - 16;\end{cases} \begin{cases}\sqrt[3]{x} + \sqrt[3]{y} = 4,\\-3\sqrt[3]{xy} = 7 - 16;\end{cases}](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7D%5Csqrt%5B3%5D%7Bx%7D%20%2B%20%5Csqrt%5B3%5D%7By%7D%20%3D%204%2C%5C%5C-3%5Csqrt%5B3%5D%7Bxy%7D%20%3D%207%20-%2016%3B%5Cend%7Bcases%7D)
![\begin{cases}\sqrt[3]{x} + \sqrt[3]{y} = 4,\\3\sqrt[3]{xy} = 9;\end{cases} \begin{cases}\sqrt[3]{x} + \sqrt[3]{y} = 4,\\3\sqrt[3]{xy} = 9;\end{cases}](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7D%5Csqrt%5B3%5D%7Bx%7D%20%2B%20%5Csqrt%5B3%5D%7By%7D%20%3D%204%2C%5C%5C3%5Csqrt%5B3%5D%7Bxy%7D%20%3D%209%3B%5Cend%7Bcases%7D)
![\begin{cases}\sqrt[3]{x} + \sqrt[3]{y} = 4,\\\sqrt[3]{xy} = 3;\end{cases} \begin{cases}\sqrt[3]{x} + \sqrt[3]{y} = 4,\\\sqrt[3]{xy} = 3;\end{cases}](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7D%5Csqrt%5B3%5D%7Bx%7D%20%2B%20%5Csqrt%5B3%5D%7By%7D%20%3D%204%2C%5C%5C%5Csqrt%5B3%5D%7Bxy%7D%20%3D%203%3B%5Cend%7Bcases%7D)
Выразим из первого уравнения одно из слагаемых.
![\begin{cases}\sqrt[3]{x} = 4 - \sqrt[3]{y},\\\sqrt[3]{x}*\sqrt[3]{y} = 3;\end{cases} \begin{cases}\sqrt[3]{x} = 4 - \sqrt[3]{y},\\\sqrt[3]{x}*\sqrt[3]{y} = 3;\end{cases}](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7D%5Csqrt%5B3%5D%7Bx%7D%20%3D%204%20-%20%5Csqrt%5B3%5D%7By%7D%2C%5C%5C%5Csqrt%5B3%5D%7Bx%7D%2A%5Csqrt%5B3%5D%7By%7D%20%3D%203%3B%5Cend%7Bcases%7D)
Подставляем первое уравнение во второе.
![(4 - \sqrt[3]{y})*\sqrt[3]{y} = 3;\\4\sqrt[3]{y} - \sqrt[3]{y^2} = 3;\\-\sqrt[3]{y^2} + 4\sqrt[3]{y} - 3 = 0;\\\sqrt[3]{y^2} - 4\sqrt[3]{y} + 3 = 0. (4 - \sqrt[3]{y})*\sqrt[3]{y} = 3;\\4\sqrt[3]{y} - \sqrt[3]{y^2} = 3;\\-\sqrt[3]{y^2} + 4\sqrt[3]{y} - 3 = 0;\\\sqrt[3]{y^2} - 4\sqrt[3]{y} + 3 = 0.](https://tex.z-dn.net/?f=%284%20-%20%5Csqrt%5B3%5D%7By%7D%29%2A%5Csqrt%5B3%5D%7By%7D%20%3D%203%3B%5C%5C4%5Csqrt%5B3%5D%7By%7D%20-%20%5Csqrt%5B3%5D%7By%5E2%7D%20%3D%203%3B%5C%5C-%5Csqrt%5B3%5D%7By%5E2%7D%20%2B%204%5Csqrt%5B3%5D%7By%7D%20-%203%20%3D%200%3B%5C%5C%5Csqrt%5B3%5D%7By%5E2%7D%20-%204%5Csqrt%5B3%5D%7By%7D%20%2B%203%20%3D%200.)
Введём замену переменных
и решим квадратное уравнение.
![t^2 - 4t + 3 = 0;\\D = [b^2 - 4ac] = (-4)^2 - 4*3 = 16 - 12 = 4 = 2^2;\\\\t_{1,2} = \left[\dfrac{-b\pm \sqrt{D}}{2a}\right] = \dfrac{4\pm 2}{2} = 2\pm 1 = \left[\begin{array}{c}1,\\3.\end{array} t^2 - 4t + 3 = 0;\\D = [b^2 - 4ac] = (-4)^2 - 4*3 = 16 - 12 = 4 = 2^2;\\\\t_{1,2} = \left[\dfrac{-b\pm \sqrt{D}}{2a}\right] = \dfrac{4\pm 2}{2} = 2\pm 1 = \left[\begin{array}{c}1,\\3.\end{array}](https://tex.z-dn.net/?f=t%5E2%20-%204t%20%2B%203%20%3D%200%3B%5C%5CD%20%3D%20%5Bb%5E2%20-%204ac%5D%20%3D%20%28-4%29%5E2%20-%204%2A3%20%3D%2016%20-%2012%20%3D%204%20%3D%202%5E2%3B%5C%5C%5C%5Ct_%7B1%2C2%7D%20%3D%20%5Cleft%5B%5Cdfrac%7B-b%5Cpm%20%5Csqrt%7BD%7D%7D%7B2a%7D%5Cright%5D%20%3D%20%5Cdfrac%7B4%5Cpm%202%7D%7B2%7D%20%3D%202%5Cpm%201%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D1%2C%5C%5C3.%5Cend%7Barray%7D)
Вернёмся к замене.
![\left[\begin{array}{c}\sqrt[3]{y_1} = 1,\\\sqrt[3]{y_2} = 3;\end{array} \left[\begin{array}{c}\sqrt[3]{y_1} = 1,\\\sqrt[3]{y_2} = 3;\end{array}](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D%5Csqrt%5B3%5D%7By_1%7D%20%3D%201%2C%5C%5C%5Csqrt%5B3%5D%7By_2%7D%20%3D%203%3B%5Cend%7Barray%7D)

Подставим полученное в первое уравнение системы.
![\left[\begin{array}{c}\sqrt[3]{x_1} + \sqrt[3]{1} = 4,\\\sqrt[3]{x_2} + \sqrt[3]{27} = 4;\end{array} \left[\begin{array}{c}\sqrt[3]{x_1} + \sqrt[3]{1} = 4,\\\sqrt[3]{x_2} + \sqrt[3]{27} = 4;\end{array}](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D%5Csqrt%5B3%5D%7Bx_1%7D%20%2B%20%5Csqrt%5B3%5D%7B1%7D%20%3D%204%2C%5C%5C%5Csqrt%5B3%5D%7Bx_2%7D%20%2B%20%5Csqrt%5B3%5D%7B27%7D%20%3D%204%3B%5Cend%7Barray%7D)
![\left[\begin{array}{c}\sqrt[3]{x_1} + 1 = 4,\\\sqrt[3]{x_2} + 3 = 4;\end{array} \left[\begin{array}{c}\sqrt[3]{x_1} + 1 = 4,\\\sqrt[3]{x_2} + 3 = 4;\end{array}](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D%5Csqrt%5B3%5D%7Bx_1%7D%20%2B%201%20%3D%204%2C%5C%5C%5Csqrt%5B3%5D%7Bx_2%7D%20%2B%203%20%3D%204%3B%5Cend%7Barray%7D)
![\left[\begin{array}{c}\sqrt[3]{x_1} = 3,\\\sqrt[3]{x_2} = 1;\end{array} \left[\begin{array}{c}\sqrt[3]{x_1} = 3,\\\sqrt[3]{x_2} = 1;\end{array}](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D%5Csqrt%5B3%5D%7Bx_1%7D%20%3D%203%2C%5C%5C%5Csqrt%5B3%5D%7Bx_2%7D%20%3D%201%3B%5Cend%7Barray%7D)

Таким образом, получаем два ответа:
1) x₁ = 27; y₁ = 1.
2) x₂ = 1; y₂ = 27.
Ответ: (27; 1); (1; 27).