.Помогите решить задачу

0 голосов
35 просмотров

.Помогите решить задачу


image

Математика (6.1k баллов) | 35 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

В заданном выражении x² + y² - 14x - 8y + 40 = 0 надо выделить полные квадраты: x² - 14x + 49 - 49 + y² - 8y + 16 - 16 + 40 = 0.

(x² - 14x + 49) - 49 + (y² - 8y + 16) - 16 + 40 = 0

(x - 7)² + (y - 4)² = 25.

Это уравнение окружности с центром в точке А(7; 4) и радиусом 5.

Эта окружность пересекает ось Ох в точках при у = 0.

(x - 7)² + (0 - 4)² = 25.

(x - 7)² + 16 = 25.

(x - 7)² = 9 = 3².

|x - 7| = 3.

Раскрываем модуль:

x = 3 + 7 = 10.

-х = 3 - 7 = -4.

х = 4.

Получили 2 точки: В(4; 0) и С(10; 0) и треугольник АВС.

Высота треугольника равна √(5² - ((10-4)/2)²) = √(25 - 9) = √16 = 4.

Площадь этого треугольника равна (1/2)*6*4 = 12 кв.ед.


(309k баллов)
0

Спасибо большое

0

поможете ещё?