14^600 = 2^600 * 7^600, поэтому все простые делители сомножителей это 2 и 7.
Чтобы n было наименьшим, у него не должно быть делителей, отличных от 2 и 7 (если это было бы не так, можно было бы выбросить все остальные простые множители и получить меньшее n, у которого можно было бы найти те же три делителя).
Пусть степени двойки, входящие в сомножители, есть a <= b <= c, при этом a + b + c = 600. Тогда c >= 200 (если c <= 199, то a + b + c <= 3c <= 597). Значит, n делится на 2^200.</p>
Аналогично, n делится на 7^200. Тогда n >= 2^200 * 7^200.
n = 2^200 * 7^200 не подходит: максимальный сомножитель может быть не больше n, остальные строго меньше n, поэтому произведение строго меньше n^3 = 14^600.
Следующий по возрастанию вариант n = 2^201 * 7^200. Он подходит: тремя делителями можно взять 2^199 * 7^200, 2^200 * 7^200, 2^201 * 7^200.
Ответ: 2^201 * 7^200.