![\displaystyle y=a_1\cdot a_2\cdot a_3\cdot ... \cdot a_{14}+\frac{x_1\cdot x_3\cdot x_5\cdot ... \cdot x_{15}}{1+(a_2\cdot a_5\cdot a_8\cdot ... \cdot a_{14})^2};\\\\y=\prod_{i=1}^{14}a_i+\frac{\displaystyle \prod_{i=1}^8x_{2i-1}}{1+\displaystyle\left( \prod_{i=1}^5a_{3i-1}\right)^2} =\prod_{i=0}^{13}a_i+\frac{\displaystyle\prod_{i=0}^7x_{2i}}{1+\displaystyle\left(\prod_{i=0}^4a_{3i+1}\right)^2} \displaystyle y=a_1\cdot a_2\cdot a_3\cdot ... \cdot a_{14}+\frac{x_1\cdot x_3\cdot x_5\cdot ... \cdot x_{15}}{1+(a_2\cdot a_5\cdot a_8\cdot ... \cdot a_{14})^2};\\\\y=\prod_{i=1}^{14}a_i+\frac{\displaystyle \prod_{i=1}^8x_{2i-1}}{1+\displaystyle\left( \prod_{i=1}^5a_{3i-1}\right)^2} =\prod_{i=0}^{13}a_i+\frac{\displaystyle\prod_{i=0}^7x_{2i}}{1+\displaystyle\left(\prod_{i=0}^4a_{3i+1}\right)^2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%3Da_1%5Ccdot%20a_2%5Ccdot%20a_3%5Ccdot%20...%20%5Ccdot%20a_%7B14%7D%2B%5Cfrac%7Bx_1%5Ccdot%20x_3%5Ccdot%20x_5%5Ccdot%20...%20%5Ccdot%20x_%7B15%7D%7D%7B1%2B%28a_2%5Ccdot%20a_5%5Ccdot%20a_8%5Ccdot%20...%20%5Ccdot%20a_%7B14%7D%29%5E2%7D%3B%5C%5C%5C%5Cy%3D%5Cprod_%7Bi%3D1%7D%5E%7B14%7Da_i%2B%5Cfrac%7B%5Cdisplaystyle%20%5Cprod_%7Bi%3D1%7D%5E8x_%7B2i-1%7D%7D%7B1%2B%5Cdisplaystyle%5Cleft%28%20%5Cprod_%7Bi%3D1%7D%5E5a_%7B3i-1%7D%5Cright%29%5E2%7D%20%3D%5Cprod_%7Bi%3D0%7D%5E%7B13%7Da_i%2B%5Cfrac%7B%5Cdisplaystyle%5Cprod_%7Bi%3D0%7D%5E7x_%7B2i%7D%7D%7B1%2B%5Cdisplaystyle%5Cleft%28%5Cprod_%7Bi%3D0%7D%5E4a_%7B3i%2B1%7D%5Cright%29%5E2%7D)
PascalABC.NET 3.4.2, сборка 1884 от 24.11.2018
Внимание! Если программа не работает, обновите версию!
begin
var a := SeqRandomReal(14, -99, 99)
.Select(t -> Round(t, 1)).ToArray;
a.Println;
var x := SeqRandomReal(15, -99, 99)
.Select(t -> Round(t, 1)).ToArray;
x.Println;
var (p1,p2,p3):=(1.0,1.0,1.0);
for var i:=0 to 13 do
p1*=a[i];
for var i:=0 to 7 do
p2*=x[2*i];
for var i:=0 to 4 do
p3*=a[3*i+1];
var y:=p1+p2/(1+p3*p3);
Println('y =',y)
end.
Пример
77.2 84.2 -5.9 89.4 93.3 -16.9 -25.7 26.9 -79.7 -3.4 55.3 46.9 -93.8 -28.9
42.6 63.9 97.4 46.5 -50.2 11.6 -21.1 52.1 -40.1 -90.6 74.1 -24.7 -22.3 -58 -3.3
y = -7.12046846792187E+21