Через вершину конуса и хорду АВ, стягивающую дугу в 60°, проведена плоскость,составляющая...

0 голосов
331 просмотров

Через вершину конуса и хорду АВ, стягивающую дугу в 60°, проведена плоскость,составляющая с плоскостью основания угол 30°.Высота конуса 1 см. Найти площадь сечения.


Математика (247 баллов) | 331 просмотров
Дан 1 ответ
0 голосов

Ответ:

(2*(15)^1/2)/3

Пошаговое объяснение:

Пусть CD-высота конуса, равная 1 см, D лежит на основании конуса, AB-хорда, тогда AD, BD-радиусы основания; CH-перепендикуляр к хорде AB(рисунок сделаешь сам(а))

нам известны CD=1см, угол CHD=30, угол ADB=60. Находим площадь треугольника ABC.

треугольник ABD-равносторонний, стороны равны радиусу основания конуса.

CH=CD/sin(CHD)=1/1/2=2см

DH=(CH^2-CD^2)^1/2=(5)^1/2

Рассмотрим треугольник DHB, у него DH=(5)^1/2. Найдем HB

HB=HD*tg(HDB)=(5)^1/2*(3)^1/2/3=((15)^1/2)/3

Найдем площадь сечения:

S=CH*HB=(2*(15)^1/2)/3

(148 баллов)