Ответ:![y''_{xx}=-\frac{1}{(1+cost)^2} y''_{xx}=-\frac{1}{(1+cost)^2}](https://tex.z-dn.net/?f=y%27%27_%7Bxx%7D%3D-%5Cfrac%7B1%7D%7B%281%2Bcost%29%5E2%7D)
y''ₓₓ= -1/(1+cost)²
Пошаговое объяснение:
Помогите, пожалуйста, найти производную (похідну) y''xx-?
![\left \{ {{y=2+cost} \atop {x=t+sint}} \right. \left \{ {{y=2+cost} \atop {x=t+sint}} \right.](https://tex.z-dn.net/?f=%5Cleft%20%5C%7B%20%7B%7By%3D2%2Bcost%7D%20%5Catop%20%7Bx%3Dt%2Bsint%7D%7D%20%5Cright.)
Функция задана параметрически
![\left \{ {{x=\varphi (t)} \atop {y=\psi(t)}} \right. \left \{ {{x=\varphi (t)} \atop {y=\psi(t)}} \right.](https://tex.z-dn.net/?f=%5Cleft%20%5C%7B%20%7B%7Bx%3D%5Cvarphi%20%28t%29%7D%20%5Catop%20%7By%3D%5Cpsi%28t%29%7D%7D%20%5Cright.)
Первая производная находиться по формуле
![y'_x=\frac{y'_t}{x'_t} y'_x=\frac{y'_t}{x'_t}](https://tex.z-dn.net/?f=y%27_x%3D%5Cfrac%7By%27_t%7D%7Bx%27_t%7D)
Вторая производная находиться по формуле
![y''_{xx}=\frac{x'_t\cdot y''_{tt}-x''_{tt}\cdot y'_t}{(x'_t)^3} y''_{xx}=\frac{x'_t\cdot y''_{tt}-x''_{tt}\cdot y'_t}{(x'_t)^3}](https://tex.z-dn.net/?f=y%27%27_%7Bxx%7D%3D%5Cfrac%7Bx%27_t%5Ccdot%20y%27%27_%7Btt%7D-x%27%27_%7Btt%7D%5Ccdot%20y%27_t%7D%7B%28x%27_t%29%5E3%7D)
Находим первые производные
![x'_t = (t+sint)' = t' +(sint)' =1 +cost x'_t = (t+sint)' = t' +(sint)' =1 +cost](https://tex.z-dn.net/?f=x%27_t%20%3D%20%28t%2Bsint%29%27%20%3D%20t%27%20%2B%28sint%29%27%20%3D1%20%2Bcost)
![y'_t=(2+cost)' =(2)' +(cost)' =-sint y'_t=(2+cost)' =(2)' +(cost)' =-sint](https://tex.z-dn.net/?f=y%27_t%3D%282%2Bcost%29%27%20%3D%282%29%27%20%2B%28cost%29%27%20%3D-sint)
![y'_x=\frac{y'_t}{x'_t}=\frac{-sint}{1+cost}=-\frac{sint}{1+cost} y'_x=\frac{y'_t}{x'_t}=\frac{-sint}{1+cost}=-\frac{sint}{1+cost}](https://tex.z-dn.net/?f=y%27_x%3D%5Cfrac%7By%27_t%7D%7Bx%27_t%7D%3D%5Cfrac%7B-sint%7D%7B1%2Bcost%7D%3D-%5Cfrac%7Bsint%7D%7B1%2Bcost%7D)
Находим вторые производные
![x''_{tt} = (1 +cost)' = (1)' +(cost)'=-sint x''_{tt} = (1 +cost)' = (1)' +(cost)'=-sint](https://tex.z-dn.net/?f=x%27%27_%7Btt%7D%20%3D%20%281%20%2Bcost%29%27%20%3D%20%281%29%27%20%2B%28cost%29%27%3D-sint)
![y''_{tt}=(-sint)'=-cost y''_{tt}=(-sint)'=-cost](https://tex.z-dn.net/?f=y%27%27_%7Btt%7D%3D%28-sint%29%27%3D-cost)
![y''_{xx}=\frac{(1+cost)\cdot(-cost)-(-sint)\cdot(-sint)}{(1+cost)^3}=\frac{-cost-(cost)^2-(sint)^2}{(1+cost)^3}=-\frac{1+cost}{(1+cost)^3}=-\frac{1}{(1+cost)^2} y''_{xx}=\frac{(1+cost)\cdot(-cost)-(-sint)\cdot(-sint)}{(1+cost)^3}=\frac{-cost-(cost)^2-(sint)^2}{(1+cost)^3}=-\frac{1+cost}{(1+cost)^3}=-\frac{1}{(1+cost)^2}](https://tex.z-dn.net/?f=y%27%27_%7Bxx%7D%3D%5Cfrac%7B%281%2Bcost%29%5Ccdot%28-cost%29-%28-sint%29%5Ccdot%28-sint%29%7D%7B%281%2Bcost%29%5E3%7D%3D%5Cfrac%7B-cost-%28cost%29%5E2-%28sint%29%5E2%7D%7B%281%2Bcost%29%5E3%7D%3D-%5Cfrac%7B1%2Bcost%7D%7B%281%2Bcost%29%5E3%7D%3D-%5Cfrac%7B1%7D%7B%281%2Bcost%29%5E2%7D)
При преобразовании использовали тригонометрическое равенство
sin²t + cos²t = 1