0\; \; ,\; \; ODZ:\; \; x^2+1>0\; ,\; \underline {x\in R}\\\\a)\; \; \left \{ {{x^2-4>0} \atop {log_{1/2}(x^2+1)>0}} \right. \; \left \{ {{(x-2)(x+2)>0} \atop {x^2+1<1}} \right. \; \left \{ {{x\in (-\infty ,-2)\cup (2,+\infty )} \atop {x^2<0\qquad \qquad \qquad }} \right. \\\\\left \{ {{x\in (-\infty ,-2)\cup (2,+\infty )} \atop {x\in \varnothing }} \right. \; \; \Rightarrow \; \; \underline {x\in \varnothing }" alt="(x^2-4)\cdot log_{1/2}(x^2+1)>0\; \; ,\; \; ODZ:\; \; x^2+1>0\; ,\; \underline {x\in R}\\\\a)\; \; \left \{ {{x^2-4>0} \atop {log_{1/2}(x^2+1)>0}} \right. \; \left \{ {{(x-2)(x+2)>0} \atop {x^2+1<1}} \right. \; \left \{ {{x\in (-\infty ,-2)\cup (2,+\infty )} \atop {x^2<0\qquad \qquad \qquad }} \right. \\\\\left \{ {{x\in (-\infty ,-2)\cup (2,+\infty )} \atop {x\in \varnothing }} \right. \; \; \Rightarrow \; \; \underline {x\in \varnothing }" align="absmiddle" class="latex-formula">
1}} \right. \; \left \{ {{x\in (-2,2)\qquad \qquad \quad } \atop {x^2>0\; ,\; (x^2\ne 0\; \to \; x\ne 0)}} \right. \\\\\left \{ {{x\in (-2,2)} \atop {x\ne 0}} \right. \; \; \Rightarrow \; \; \underline {x\in (-2,0)\cup (0,2)}\\\\Otvet :\; \; x\in (-2,0)\cup (0,2)\; .\\\\\star \; \; R=(-\infty ,+\infty )\; \; \star " alt="b)\; \; \left \{ {{x^2-4<0} \atop {log_{1/2}(x^2+1)<0}} \right. \; \left \{ {{(x-2)(x+2)<0} \atop {x^2+1>1}} \right. \; \left \{ {{x\in (-2,2)\qquad \qquad \quad } \atop {x^2>0\; ,\; (x^2\ne 0\; \to \; x\ne 0)}} \right. \\\\\left \{ {{x\in (-2,2)} \atop {x\ne 0}} \right. \; \; \Rightarrow \; \; \underline {x\in (-2,0)\cup (0,2)}\\\\Otvet :\; \; x\in (-2,0)\cup (0,2)\; .\\\\\star \; \; R=(-\infty ,+\infty )\; \; \star " align="absmiddle" class="latex-formula">