a)((u(x) - 1) \times v(x))} \\ u(x) = \frac{2x + 3}{5 + x} \\ v(x) = \frac{1}{ {x}^{2} - x - 2} \\ lim(x - > 2) ((\frac{2x + 3}{5 + x} - 1) \times \frac{1}{ {x}^{2} - x - 2}) = lim(x - > 2)( \frac{2x + 3 - 5 - x}{5 + x} ) \times \frac{1}{{x}^{2} - x - 2} = lim(x - > 2)(\frac{x - 2}{5 + x} \times \frac{1}{(x - 2)(x + 1}) = lim(x - > 2)( \frac{1}{(5 + x)(x + 1)} = \frac{1}{21} = > {e}^{ \frac{1}{21} } " alt=" {e}^{lim(x - > a)((u(x) - 1) \times v(x))} \\ u(x) = \frac{2x + 3}{5 + x} \\ v(x) = \frac{1}{ {x}^{2} - x - 2} \\ lim(x - > 2) ((\frac{2x + 3}{5 + x} - 1) \times \frac{1}{ {x}^{2} - x - 2}) = lim(x - > 2)( \frac{2x + 3 - 5 - x}{5 + x} ) \times \frac{1}{{x}^{2} - x - 2} = lim(x - > 2)(\frac{x - 2}{5 + x} \times \frac{1}{(x - 2)(x + 1}) = lim(x - > 2)( \frac{1}{(5 + x)(x + 1)} = \frac{1}{21} = > {e}^{ \frac{1}{21} } " align="absmiddle" class="latex-formula">