Lim (x→0) (√cosx - 1)/(sin²2x) = lim (x→0) [(√cosx - 1)(√cosx + 1)]/[(sin²2x)(√cosx + 1)] = lim (x→0) (cosx - 1)/[(sin²2x)(√cosx + 1)] = lim (x→0) (cosx - 1)/[(sin²2x)(√cosx +1)] = lim (x→0) (-2sin²(x/2))/[(4sin²xcos²x)(√cosx + 1)] = lim (x→0) (-2sin²(x/2))/[(16sin²(x/2)cos²(x/2)cos²x)(√cosx + 1)] = lim (x→0) -1/[(8cos²(x/2)cos²x)(√cosx + 1)] = 1/[8×1×1×(1+1)] = -1/16.
Короче говооя, мы сделали следующее:
• Умножили числитель и знаменатель на √cosx + 1;
• Свернули числитель в разность квадратов, а затем заменили его по формуле 1 - соsx = 2sin²(x/2);
• В знаменателе два раза воспользовались формулой синуса двойного угла;
• Сократили 2sin²(x/2) и вычислили предел.