\sqrt{x-1}\\\\ODZ:\; \; \left \{ {{x\geq -2\; ,\; x\geq 1/3} \atop {x\geq 1}} \right. \; \; \to \; \; x\geq 1\\\\\underbrace {\sqrt{x+2}}_{\geq 0}>\underbrace {\sqrt{x-1}+\sqrt{3x-1}}_{\geq 0}\\\\x+2>(x-1)+2\cdot \sqrt{x-1}\cdot \sqrt{3x-1}+(3x-1)\\\\x+2>4x-2+2\cdot \sqrt{(x-1)(3x-1)}\\\\2\cdot \sqrt{(x-1)(3x-1)}<-3x+4\\\\4(x-1)(3x-1)<9x^2-24x+16\\\\4(3x^2-4x+1)<9x^2-24x+16\\\\3x^2+8x-12<0\\\\D/4=4^2+3\cdot 12=52\; ,\; \; x_{1,2}=\frac{-4\pm \sqrt{52}}{3}=\frac{-4\pm 2\sqrt{13}}{3}" alt="\sqrt{x+2}-\sqrt{3x-1}>\sqrt{x-1}\\\\ODZ:\; \; \left \{ {{x\geq -2\; ,\; x\geq 1/3} \atop {x\geq 1}} \right. \; \; \to \; \; x\geq 1\\\\\underbrace {\sqrt{x+2}}_{\geq 0}>\underbrace {\sqrt{x-1}+\sqrt{3x-1}}_{\geq 0}\\\\x+2>(x-1)+2\cdot \sqrt{x-1}\cdot \sqrt{3x-1}+(3x-1)\\\\x+2>4x-2+2\cdot \sqrt{(x-1)(3x-1)}\\\\2\cdot \sqrt{(x-1)(3x-1)}<-3x+4\\\\4(x-1)(3x-1)<9x^2-24x+16\\\\4(3x^2-4x+1)<9x^2-24x+16\\\\3x^2+8x-12<0\\\\D/4=4^2+3\cdot 12=52\; ,\; \; x_{1,2}=\frac{-4\pm \sqrt{52}}{3}=\frac{-4\pm 2\sqrt{13}}{3}" align="absmiddle" class="latex-formula">