Существует ли такое кратное 11 трёхзначное число , у которого вторая цифра в 12 раз...

0 голосов
531 просмотров

Существует ли такое кратное 11 трёхзначное число , у которого вторая цифра в 12 раз меньше произведения двух других его цифр ? Пожалуйста объясните подробно как решать


Математика (21 баллов) | 531 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Пусть трёхзначное число имеет вид  \overline{abc} .  Причём  a\cdot c=12b .

a\cdot c\leq 9\cdot 9\leq 81~~\Rightarrow~~12b\leq 81~~\Rightarrow~~\boldsymbol{b\leq 6}

Число делится на 11, если сумма цифр на чётных местах равна сумме цифр на нечётных местах либо отличается на 11. В данном случае

a+c=b   либо   a+c=b+11

image0" alt="1)\displaystyle \left \{ {{a+c=b~~~\Big|\cdot 12} \atop {a\cdot c=12b~~~~~~~~}} \right.~~\Rightarrow~~\left \{ {{12a+12c=12b} \atop {a\cdot c=12b~~~~~~~}} \right.\\\\~~\Rightarrow~~12a+12c=ac~~\big|:ac>0" align="absmiddle" class="latex-formula">

image1" alt="~~~~\Rightarrow~~\dfrac{12}c+\dfrac {12}a=1,~c\leq 9,~a\leq 9~~~\Rightarrow~~\dfrac{12}c+\dfrac {12}a>1" align="absmiddle" class="latex-formula">  - решений нет.

\displaystyle 2)\left \{ {{a+c=b+11} \atop {a\cdot c=12b~~~~}} \right. \\\\b=1;\ \ \left \{ {{a+c=12} \atop {a\cdot c=12~}} \right. ~~\Rightarrow~~\left \{ {{a=12-c~~~~~~~} \atop {(12-c)c-12=0}} \right. \\\\~~\Rightarrow~~\left \{ {{a=12-c} \atop {c^2-12c+12=0}} \right. ~~\Rightarrow~~\sqrt D=\sqrt{144-48}=\sqrt{96}\notin\mathbb N

\displaystyle b=2;\ \ \left \{ {{a+c=13} \atop {a\cdot c=24~}} \right. ~~\Rightarrow~~\left \{ {{a=13-c~~~~~~~} \atop {(13-c)c-24=0}} \right. \\\\~~\Rightarrow~~\left \{ {{a=13-c} \atop {c^2-13c+24=0}} \right. ~~\Rightarrow~~\sqrt D=\sqrt{169-96}=\sqrt{73}\notin\mathbb N

\displaystyle b=3;\ \ \left \{ {{a+c=14} \atop {a\cdot c=36~}} \right. ~~\Rightarrow~~\left \{ {{a=14-c~~~~~~~} \atop {(14-c)c-36=0}} \right. \\\\~~\Rightarrow~~\left \{ {{a=14-c} \atop {c^2-14c+36=0}} \right. ~~\Rightarrow~~\sqrt D=\sqrt{196-144}=\sqrt{51}\notin\mathbb N

\displaystyle b=4;\ \ \left \{ {{a+c=15} \atop {a\cdot c=48~}} \right. ~~\Rightarrow~~\left \{ {{a=15-c~~~~~~~} \atop {(15-c)c-48=0}} \right. \\\\~~\Rightarrow~~\left \{ {{a=15-c} \atop {c^2-15c+48=0}} \right. ~~\Rightarrow~~\sqrt D=\sqrt{225-192}=\sqrt{33}\notin\mathbb N

image9~~~~~~~~~~~\\6;\ \ a_2=10>9\end{array}" alt="\displaystyle b=5;\ \ \left \{ {{a+c=16} \atop {a\cdot c=60~}} \right. ~~\Rightarrow~~\left \{ {{a=16-c~~~~~~~} \atop {(16-c)c-60=0}} \right. \\\\~~\Rightarrow~~\left \{ {{a=16-c} \atop {c^2-16c+60=0}} \right. ~~\Rightarrow~~\sqrt D=\sqrt{256-240}=4\\\\c_{1,2}=\dfrac{16\pm4}2=\left[\begin{array}{c}10>9~~~~~~~~~~~\\6;\ \ a_2=10>9\end{array}" align="absmiddle" class="latex-formula">

\displaystyle b=6;\ \ \left \{ {{a+c=17} \atop {a\cdot c=72~}} \right. ~~\Rightarrow~~\left \{ {{a=17-c~~~~~~~} \atop {(17-c)c-72=0}} \right. \\\\~~\Rightarrow~~\left \{ {{a=17-c} \atop {c^2-17c+72=0}} \right. ~~\Rightarrow~~\sqrt D=\sqrt{289-288}=1\\\\c_{1,2}=\dfrac{17\pm1}2=\left[\begin{array}{c}9;\ a_1=8\\8;\ a_2=9\end{array}

============================

Проверка :

1) 869 : 11 = 79;   8 · 9 = 72 = 12 · 6

2) 968 : 11 = 88;   8 · 9 = 72 = 12 · 6

Ответ : 869  и  968

(41.1k баллов)