x \div x - 1 \\ {x}^{2} - 2x + y < 3 \\ y + 2 > 1 - 1 \\ y > - 2 \\ {x}^{2} - 2x - 2 < 3 \\ {x}^{2} - 2x -5 < 0 \\ d = - 4 - 4 \times - 5 = - 4 + 20 = 16 \\ \sqrt{16} = 4 \\ x1 = \frac{2 + 4}{2} = \frac{6}{2} = 3 \\ x2 = \frac{2 - 4}{2} = - 1 \\ x < 3 \\y > - 2" alt="y + 2 > x \div x - 1 \\ {x}^{2} - 2x + y < 3 \\ y + 2 > 1 - 1 \\ y > - 2 \\ {x}^{2} - 2x - 2 < 3 \\ {x}^{2} - 2x -5 < 0 \\ d = - 4 - 4 \times - 5 = - 4 + 20 = 16 \\ \sqrt{16} = 4 \\ x1 = \frac{2 + 4}{2} = \frac{6}{2} = 3 \\ x2 = \frac{2 - 4}{2} = - 1 \\ x < 3 \\y > - 2" align="absmiddle" class="latex-formula">
x≠-1