Можно воспользоваться таким следствием из второго замечательного предел что
lim \ x->0 \ \frac{ln(1+x)}{x}=1lim x−>0 xln(1+x)=1
Перейдем к нашему пределу
\begin{lgathered}x->2 \ \ (3x-5)^{\frac{2x}{x^2-4}}\\\\ x->2 \ \ e^{\frac{ln(3x-5)*2x}{x^2-4}}\\\\\end{lgathered}x−>2 (3x−5)x2−42xx−>2 ex2−4ln(3x−5)∗2x
сделаем теперь некую замену x-2=yx−2=y , тогда y->0y−>0 предел примет вид без основания
\begin{lgathered}y->0 \ \frac{ln(3y+1)*2(y+2)}{y^2-4y}\\\\ y->0 \ \frac{ln(3y+1)*4}{3y(\frac{y}{3}+\frac{4}{3})}=\\\\ y->0 \ \ 1*\frac{4}{\frac{4}{3}}=3\end{lgathered}y−>0 y2−4yln(3y+1)∗2(y+2)y−>0 3y(3y+34)ln(3y+1)∗4=y−>0 1∗344=3
то есть предел равен e^3e3