0}} \right. \; \left \{ {{2^{x^2-x-2}\geq 2^0} \atop {x^2-x-2>0}} \right. \; \left \{ {{x^2-x-2\geq 0} \atop {x^2-x-2>0}} \right. \; \to \; \; x^2-x-2>0\; ,\\\\(x-2)(x+1)>0\; \; ,\; \; +++(-1)---(2)+++\\\\x\in (-\infty ,-1)\cup (2,+\infty )\\\\2)\; \; (\frac{1}{5})^{x^2-7}-5\cdot 0,2^{x}<0\; ,\; \; \; ODZ:\; x\in R" alt="1)\; \; \frac{2^{x^2-x-2}-1}{x^2-x-2}\geq 0\; ,\; \; ODZ:\; x^2-x-2\ne 0\; \to \; x_1\ne -1\; ,\; x_2\ne 2\\\\\left \{ {{2^{x2-x-2}-1\geq 0} \atop {x^2-x-2>0}} \right. \; \left \{ {{2^{x^2-x-2}\geq 2^0} \atop {x^2-x-2>0}} \right. \; \left \{ {{x^2-x-2\geq 0} \atop {x^2-x-2>0}} \right. \; \to \; \; x^2-x-2>0\; ,\\\\(x-2)(x+1)>0\; \; ,\; \; +++(-1)---(2)+++\\\\x\in (-\infty ,-1)\cup (2,+\infty )\\\\2)\; \; (\frac{1}{5})^{x^2-7}-5\cdot 0,2^{x}<0\; ,\; \; \; ODZ:\; x\in R" align="absmiddle" class="latex-formula">
0\; ,\; \; x_1=-2\; ,\; x_2=3\; \; (teorema\; Vieta)\\\\(x-3)(x+2)>0\quad +++(-2)---(3)+++\\\\x\in (-\infty ,-2)\cup (3,+\infty )" alt="(\frac{1}{5})^{x^2-7}<5\cdot (\frac{1}{5})^{x}\\\\5^{-(x^2-7)}<5\cdot 5^{-x}\\\\5^{7-x^2}<5^{1-x}\\\\7-x^2<1-x\\\\x^2-x-6>0\; ,\; \; x_1=-2\; ,\; x_2=3\; \; (teorema\; Vieta)\\\\(x-3)(x+2)>0\quad +++(-2)---(3)+++\\\\x\in (-\infty ,-2)\cup (3,+\infty )" align="absmiddle" class="latex-formula">