0\; ,\; \; x-3=0\; \; \to \; \; x=3\; ,\; \; x\ne 1\\\\znaki\; y':\; \; +++(1)---(3)+++\; ,\; \; x\ne 1\\\\x_{min}=3\; ,\; \; y_{min}=y(3)=\frac{e^3}{4}" alt="x_1=0\; ,\; \; x_1=-2\; ,\; \; x_2=2\\\\znaki\; y':\; \; ---(-2)+++(0)---(2)+++\\\\x_{min}=-2\; ,\; \; x_{min}=2\; ,\; \; x_{max}=0\\\\y(-2)=y(2)=-14\; ,\; \; y(0)=2\\\\3)\; \; y=\frac{e^{x}}{x^2-2x+1}=\frac{e^{x}}{(x-1)^2}\; ,\; \; ODZ:\; x\ne 1\\\\y'=(\frac{e^{x}}{(x-1)^2})'=\frac{e^{x}(x-1)^2-e^{x}\cdot 2(x-1)}{(x-1)^4}=\frac{e^{x}\cdot (x-1)\cdot (x-1-2)}{(x-1)^4}=\frac{e^{x}(x-3)}{(x-1)^3}=0\\\\e^{x}>0\; ,\; \; x-3=0\; \; \to \; \; x=3\; ,\; \; x\ne 1\\\\znaki\; y':\; \; +++(1)---(3)+++\; ,\; \; x\ne 1\\\\x_{min}=3\; ,\; \; y_{min}=y(3)=\frac{e^3}{4}" align="absmiddle" class="latex-formula">