чтобы исследовать функцию на экстремум, надо найти ее производную
у=(х-1)²/х²
это дробь, а производная дроби равна разности произведения производной числителя на знаменатель и произведения числителя на производную знаменателя, деленной на квадрат знаменателя.
у¹ = ((х-1)¹*х² - (х-1)²*(х²)¹)/х⁴= (2х²-2х)/х⁴
у¹=0 - условие экстремума функции
(2х²-2х)/х⁴=0
х≠0 - на ноль делить нельзя
2х²-2х=0
х=0 и х=1 -ноль не подходит, берем 1
Чтобы функция имела в точке экстремум надо, чтобы при переходе через точку она меняла знак
вычислим
у(1/2) = 1 > 0
у(2) = 1/4 > 0
знак не поменялся, значит экстремума в этой точке нет.
в точке х=0, в которой функция не определена тоже нет перемены знака
у(-1) = 4 > 0 и у (1/2) = 1 > 0
Ответ: функция экстремумов не имеет.