Во время деловой встречи один из приглашенных,любитель математики,подсчитал,что было...

0 голосов
111 просмотров

Во время деловой встречи один из приглашенных,любитель математики,подсчитал,что было произведено 78 приветственных рукопожатий.Сколько человек присутствовало на этой встрече?


Алгебра (36 баллов) | 111 просмотров
0

перезагрузи страницу если не видно

Дано ответов: 2
0 голосов
Правильный ответ

Это число сочетаний если было всего n людей то 
 C^2_{n}=\frac{n!}{2(n-2)!}=\frac{(n-1)n}{2}=78\\
n^2-n=156\\
n^2-n-156 = 0\\
(n+12)(n-13)=0\\
n=13
13 людей 

(224k баллов)
0 голосов

Посмотрим на каждого участника - он совершил на 1 меньше рукопожатий чем количество участников (с собой не здороваются (ну в нормальном обществе))
И в каждом рукопожатии участвуют двое
количество гостей N
N(N-1)/2=78
N(N-1)=156
N^2-N-156=0
N12=(1+-корень(1+4*156))/2=(1+-25)/2= -12 13
-12 не может быть
Ответ 13 участников

(317k баллов)