Плоскость α пересекает стороны AB и AC треугольника ABC соответственно в точках B1 и C1. Известно, что BCIIα, AB:BB1=5:3, AC=15см.
Найти АС₁.
ВС║α, плоскость (АВС) проходит через ВС и пересекает α по прямой В₁С₁, значит, ВС║В₁С₁.
∠АВ₁С₁ = ∠АВС как соответственные при пересечении параллельных прямых ВС и В₁С₁ секущей АВ,
∠В общий для треугольников АВС и АВ₁С₁, значит
ΔАВС подобен ΔАВ₁С₁ по двум углам.
АВ₁:АВ = АС₁:АС = 2:5
АС₁ = 2АС/5 = 2·15/5 = 6 см