![sinx+sin2x=cosx\\\\(sinx-cosx)+sin2x=0\\\\\star \; \; t=sinx-cosx\; \; \Rightarrow \; \; t^2=(sinx-cosx)^2\\\\t^2=(sin^2x+cos^2x)-2sinx\cdot cosx=1-sin2x\; \; \Rightarrow \; \; sin2x=1-t^2\; \star \\\\t+(1-t^2)=0\; \; \Rightarrow \; \; t^2-t-1=0\; ,\; \; D=1+4=5\; ,\\\\t_{1,2}=\frac{1\pm \sqrt5}{2}\; ,\\\\a)\; \; sinx-cosx=\frac{1-\sqrt5}{2}\; ,\; \\\\\sqrt2\cdot (\frac{1}{\sqrt2}sinx-\frac{1}{\sqrt2}cosx)=\frac{1-\sqrt5}{2}\\\\\sqrt2\cdot (cos\frac{\pi}{4}sinx-sin\frac{\pi}{4}cosx)=\frac{1-\sqrt5}{2}\\\\\sqrt2\cdot sin(x-\frac{\pi}{4})=\frac{1-\sqrt5}{2} sinx+sin2x=cosx\\\\(sinx-cosx)+sin2x=0\\\\\star \; \; t=sinx-cosx\; \; \Rightarrow \; \; t^2=(sinx-cosx)^2\\\\t^2=(sin^2x+cos^2x)-2sinx\cdot cosx=1-sin2x\; \; \Rightarrow \; \; sin2x=1-t^2\; \star \\\\t+(1-t^2)=0\; \; \Rightarrow \; \; t^2-t-1=0\; ,\; \; D=1+4=5\; ,\\\\t_{1,2}=\frac{1\pm \sqrt5}{2}\; ,\\\\a)\; \; sinx-cosx=\frac{1-\sqrt5}{2}\; ,\; \\\\\sqrt2\cdot (\frac{1}{\sqrt2}sinx-\frac{1}{\sqrt2}cosx)=\frac{1-\sqrt5}{2}\\\\\sqrt2\cdot (cos\frac{\pi}{4}sinx-sin\frac{\pi}{4}cosx)=\frac{1-\sqrt5}{2}\\\\\sqrt2\cdot sin(x-\frac{\pi}{4})=\frac{1-\sqrt5}{2}](https://tex.z-dn.net/?f=sinx%2Bsin2x%3Dcosx%5C%5C%5C%5C%28sinx-cosx%29%2Bsin2x%3D0%5C%5C%5C%5C%5Cstar%20%5C%3B%20%5C%3B%20t%3Dsinx-cosx%5C%3B%20%5C%3B%20%5CRightarrow%20%5C%3B%20%5C%3B%20t%5E2%3D%28sinx-cosx%29%5E2%5C%5C%5C%5Ct%5E2%3D%28sin%5E2x%2Bcos%5E2x%29-2sinx%5Ccdot%20cosx%3D1-sin2x%5C%3B%20%5C%3B%20%5CRightarrow%20%5C%3B%20%5C%3B%20sin2x%3D1-t%5E2%5C%3B%20%5Cstar%20%5C%5C%5C%5Ct%2B%281-t%5E2%29%3D0%5C%3B%20%5C%3B%20%5CRightarrow%20%5C%3B%20%5C%3B%20t%5E2-t-1%3D0%5C%3B%20%2C%5C%3B%20%5C%3B%20D%3D1%2B4%3D5%5C%3B%20%2C%5C%5C%5C%5Ct_%7B1%2C2%7D%3D%5Cfrac%7B1%5Cpm%20%5Csqrt5%7D%7B2%7D%5C%3B%20%2C%5C%5C%5C%5Ca%29%5C%3B%20%5C%3B%20sinx-cosx%3D%5Cfrac%7B1-%5Csqrt5%7D%7B2%7D%5C%3B%20%2C%5C%3B%20%5C%5C%5C%5C%5Csqrt2%5Ccdot%20%28%5Cfrac%7B1%7D%7B%5Csqrt2%7Dsinx-%5Cfrac%7B1%7D%7B%5Csqrt2%7Dcosx%29%3D%5Cfrac%7B1-%5Csqrt5%7D%7B2%7D%5C%5C%5C%5C%5Csqrt2%5Ccdot%20%28cos%5Cfrac%7B%5Cpi%7D%7B4%7Dsinx-sin%5Cfrac%7B%5Cpi%7D%7B4%7Dcosx%29%3D%5Cfrac%7B1-%5Csqrt5%7D%7B2%7D%5C%5C%5C%5C%5Csqrt2%5Ccdot%20sin%28x-%5Cfrac%7B%5Cpi%7D%7B4%7D%29%3D%5Cfrac%7B1-%5Csqrt5%7D%7B2%7D)
1\; \; \Rightarrow \; \; x\in \varnothing" alt="sin(x-\frac{\pi }{4})=\frac{1-\sqrt5}{2\sqrt2} \approx -0,44\\\\x-\frac{\pi}{4}=(-1)^{n}\, arcsin\frac{1-\sqrt5}{2\sqrt2}+\pi n,\; n\in Z\\\\x=\frac{\pi }{4}+(-1)^{n}\, arcsin\frac{1-\sqrt5}{2\sqrt2}+\pi n=\frac{\pi}{4}+(-1)^{n+1}\, arcsin\frac{\sqrt5-1}{2\sqrt2}+\pi n,\; n\in Z\\\\b)\; \; sinx-cosx=\frac{1+\sqrt5}{2\sqrt2}\\\\sin(x-\frac{\pi}{4})=\frac{1+\sqrt5}{2\sqrt2}\approx 1,15>1\; \; \Rightarrow \; \; x\in \varnothing" align="absmiddle" class="latex-formula">
![Otvet:\; \; x=\frac{\pi }{4}+(-1)^{n+1}\, arcsin\frac{\sqrt5-1}{2\sqrt2}+\pi n,\; n\in Z\; . Otvet:\; \; x=\frac{\pi }{4}+(-1)^{n+1}\, arcsin\frac{\sqrt5-1}{2\sqrt2}+\pi n,\; n\in Z\; .](https://tex.z-dn.net/?f=Otvet%3A%5C%3B%20%5C%3B%20x%3D%5Cfrac%7B%5Cpi%20%7D%7B4%7D%2B%28-1%29%5E%7Bn%2B1%7D%5C%2C%20arcsin%5Cfrac%7B%5Csqrt5-1%7D%7B2%5Csqrt2%7D%2B%5Cpi%20n%2C%5C%3B%20n%5Cin%20Z%5C%3B%20.)