Как вычислить логарифм

0 голосов
18 просмотров

Как вычислить логарифм


Алгебра (14 баллов) | 18 просмотров
Дано ответов: 2
0 голосов

Как вычислить логарифм?

Чтобы вычислить логарифм - нужно ответить на вопрос: в какую степень следует возвести основание, чтобы получить аргумент?

Например, вычислите логарифм:  а) \(\log_{4}{16}\)     б) \(\log_{3}\)\(\frac{1}{3}\)     в) \(\log_{\sqrt{5}}{1}\)     г) \(\log_{\sqrt{7}}{\sqrt{7}}\)      д) \(\log_{3}{\sqrt{3}}\)

а) В какую степень надо возвести \(4\), чтобы получить \(16\)? Очевидно во вторую. Поэтому:  

\(\log_{4}{16}=2\)

б) В какую степень надо возвести \(3\), чтобы получить \(\frac{1}{3}\)? В минус первую, так как именно отрицательная степень «переворачивает дробь» (здесь и далее пользуемся свойствами степени).

\(\log_{3}\)\(\frac{1}{3}\)\(=-1\)

в) В какую степень надо возвести \(\sqrt{5}\), чтобы получить \(1\)? А какая степень делает любое число единицей? Ноль, конечно!

\(\log_{\sqrt{5}}{1}=0\)

г) В какую степень надо возвести \(\sqrt{7}\), чтобы получить \(\sqrt{7}\)? В первую – любое число в первой степени равно самому себе.

\(\log_{\sqrt{7}}{\sqrt{7}}=1\)

д) В какую степень надо возвести \(3\), чтобы получить \(\sqrt{3}\)? Из свойств степени мы знаем, что корень – это дробная степень, и значит квадратный корень - это степень \(\frac{1}{2}\).

\(\log_{3}{\sqrt{3}}=\)\(\frac{1}{2}\)

В сложных случаях для вычисления логарифма удобно переводить его в показательное уравнение.

Пример: Вычислить логарифм \(\log_{4\sqrt{2}}{8}\)

Решение:

\(\log_{4\sqrt{2}}{8}=x\)

                               

Нам надо найти значение логарифма, обозначим его за икс. Теперь воспользуемся определением логарифма:  

\(\log_{a}{c}=b\)       \(\Leftrightarrow\)       \(a^{b}=c\)

\((4\sqrt{2})^{x}=8\)

 

Что связывает \(4\sqrt{2}\) и \(8\)? Двойка, потому что и то, и другое число можно представить степенью двойки:

\(4=2^{2}\)         \(\sqrt{2}=2^{\frac{1}{2}}\)         \(8=2^{3}\)

\({(2^{2}\cdot2^{\frac{1}{2}})}^{x}=2^{3}\)

 

Слева воспользуемся свойствами степени: \(a^{m}\cdot a^{n}=a^{m+n}\) и \((a^{m})^{n}=a^{m\cdot n}\)

\(2^{\frac{5}{2}x}=2^{3}\)

 

Основания равны, переходим к равенству показателей

\(\frac{5x}{2}\)\(=3\)

Умножим обе части уравнения на \(\frac{2}{5}\)

\(x=1,2\)

Получившийся корень и есть значение логарифма

Ответ: \(\log_{4\sqrt{2}}{8}=1,2\)

Зачем придумали логарифм?

Чтобы это понять, давайте решим уравнение: \(3^{x}=9\). Просто подберите \(x\), чтобы равенство сработало. Конечно, \(x=2\).

А теперь решите уравнение: \(3^{x}=8\).Чему равен икс? Вот в том-то и дело.

Самые догадливые скажут: «икс чуть меньше двух». А как точно записать это число? Для ответа на этот вопрос и придумали логарифм. Благодаря ему, ответ здесь можно записать как \(x=\log_{3}{8}\).

Хочу подчеркнуть, что \(\log_{3}{8}\), как и любой логарифм - это просто число. Да, выглядит непривычно, но зато коротко. Потому что, если бы мы захотели записать его в виде десятичной дроби, то оно выглядело бы вот так: \(1,892789260714.....\)

Пример: Решите уравнение \(4^{5x-4}=10\)

Решение:

\(4^{5x-4}=10\)

                               

\(4^{5x-4}\) и \(10\) никак к одному основанию не привести. Значит тут не обойтись без логарифма.

Воспользуемся определением логарифма:  

\(a^{b}=c\)       \(\Leftrightarrow\)       \(\log_{a}{c}=b\)

\(\log_{4}{10}=5x-4\)

 

Зеркально перевернем уравнение, чтобы икс был слева

\(5x-4=\log_{4}{10}\)

 

Перед нами линейное уравнение. Перенесем \(4\) вправо.

И не пугайтесь логарифма, относитесь к нему как к обычному числу.  

\(5x=\log_{4}{10}+4\)

 

Поделим уравнение на 5

\(x=\)\(\frac{\log_{4}{10}+4}{5}\)

Вот наш корень. Да, выглядит непривычно, но ответ не выбирают.

Ответ: \(\frac{\log_{4}{10}+4}{5}\)

(18 баллов)
0 голосов

По свойствам логарифма

самый простой ㏒₂2=1

㏒₂4=2 так как 2²=4

ответ логарифма будет степень, в которую нужно возвести основание логарифма чтобы получилось логарифмическое выражение

Все свойства выходят из формулы перехода

logₐb=logₓ b/logₓ a

a^logₐb=b

(67 баллов)