2} Пусть первое число Х, второе Y
Тогда:
![\left \{ {{x-3y=3} \atop {x^{2}-y^{2}=77}} \right. \left \{ {{x-3y=3} \atop {x^{2}-y^{2}=77}} \right.](https://tex.z-dn.net/?f=%5Cleft%20%5C%7B%20%7B%7Bx-3y%3D3%7D%20%5Catop%20%7Bx%5E%7B2%7D-y%5E%7B2%7D%3D77%7D%7D%20%5Cright.)
![\left \{ {{x=3y+3} \atop {(3y+3)^{2}-y^{2}=77}} \right. \left \{ {{x=3y+3} \atop {(3y+3)^{2}-y^{2}=77}} \right.](https://tex.z-dn.net/?f=%5Cleft%20%5C%7B%20%7B%7Bx%3D3y%2B3%7D%20%5Catop%20%7B%283y%2B3%29%5E%7B2%7D-y%5E%7B2%7D%3D77%7D%7D%20%5Cright.)
Решаем второе уравнение:
![9y^{2}+18y+9-y^{2}=77\\ 8y^{2}+18y-68=0\\ 4y^{2}+9y-34=0\\ D=81+4*4*34=625\\ y_{1} = \frac{-9+25}{2*4}=2 \ \ y_{2} = \frac{-9-25}{2*4}=-4.25 9y^{2}+18y+9-y^{2}=77\\ 8y^{2}+18y-68=0\\ 4y^{2}+9y-34=0\\ D=81+4*4*34=625\\ y_{1} = \frac{-9+25}{2*4}=2 \ \ y_{2} = \frac{-9-25}{2*4}=-4.25](https://tex.z-dn.net/?f=9y%5E%7B2%7D%2B18y%2B9-y%5E%7B2%7D%3D77%5C%5C%208y%5E%7B2%7D%2B18y-68%3D0%5C%5C%204y%5E%7B2%7D%2B9y-34%3D0%5C%5C%20D%3D81%2B4%2A4%2A34%3D625%5C%5C%20y_%7B1%7D%20%3D%20%5Cfrac%7B-9%2B25%7D%7B2%2A4%7D%3D2%20%5C%20%5C%20y_%7B2%7D%20%3D%20%5Cfrac%7B-9-25%7D%7B2%2A4%7D%3D-4.25)
Поскольку числа натуральные, нам подходит только у=2. Подставляем в первое уравнение систеы и находим х=9
3} Запишем:
a_{1} = a_{11} - 10d\\ a_{21} = a_{1} + d(21-1)=a_{1} + 20d => a_{1} = a_{21} - 20d" alt="a_{11} = a_{1} + d(11-1)=a_{1} + 10d => a_{1} = a_{11} - 10d\\ a_{21} = a_{1} + d(21-1)=a_{1} + 20d => a_{1} = a_{21} - 20d" align="absmiddle" class="latex-formula">
Отсюда имеем:
![a_{11} - 10d = a_{21} - 20d\\ 23 - 10d = 43 - 20d\\ 10d=20\\ d =2 a_{11} - 10d = a_{21} - 20d\\ 23 - 10d = 43 - 20d\\ 10d=20\\ d =2](https://tex.z-dn.net/?f=a_%7B11%7D%20-%2010d%20%3D%20a_%7B21%7D%20-%2020d%5C%5C%2023%20-%2010d%20%3D%2043%20-%2020d%5C%5C%2010d%3D20%5C%5C%20d%20%3D2)
Из уравнения
находим ![a_{1}=3 a_{1}=3](https://tex.z-dn.net/?f=a_%7B1%7D%3D3)
Сумма первых десяти членов прогрессии:
![S_{10}=\frac{2a_{1}+(n-1)d}{2}n=\frac{2*3+(10-1)*2}{2}*10=120 S_{10}=\frac{2a_{1}+(n-1)d}{2}n=\frac{2*3+(10-1)*2}{2}*10=120](https://tex.z-dn.net/?f=S_%7B10%7D%3D%5Cfrac%7B2a_%7B1%7D%2B%28n-1%29d%7D%7B2%7Dn%3D%5Cfrac%7B2%2A3%2B%2810-1%29%2A2%7D%7B2%7D%2A10%3D120)
3} Воспользуемся формулой ![b_{n} = b{1}*q^{n-1} b_{n} = b{1}*q^{n-1}](https://tex.z-dn.net/?f=b_%7Bn%7D%20%3D%20b%7B1%7D%2Aq%5E%7Bn-1%7D)
![b_{6} = b_{1}*q^{6-1}\\ q^{5}=\frac{b_{6}}{b_{1}} \\ q^{5}=\frac{27}{{1/9}} \\ q^{5}=243\\ q=\sqrt[5]{243}\\ q=3 b_{6} = b_{1}*q^{6-1}\\ q^{5}=\frac{b_{6}}{b_{1}} \\ q^{5}=\frac{27}{{1/9}} \\ q^{5}=243\\ q=\sqrt[5]{243}\\ q=3](https://tex.z-dn.net/?f=b_%7B6%7D%20%3D%20b_%7B1%7D%2Aq%5E%7B6-1%7D%5C%5C%20q%5E%7B5%7D%3D%5Cfrac%7Bb_%7B6%7D%7D%7Bb_%7B1%7D%7D%20%5C%5C%20q%5E%7B5%7D%3D%5Cfrac%7B27%7D%7B%7B1%2F9%7D%7D%20%5C%5C%20q%5E%7B5%7D%3D243%5C%5C%20q%3D%5Csqrt%5B5%5D%7B243%7D%5C%5C%20q%3D3)
Находим ![b_{3}, b_{4} b_{3}, b_{4}](https://tex.z-dn.net/?f=b_%7B3%7D%2C%20b_%7B4%7D)
![b_{3}=b_{1}*q^{2}=\frac{1}{9}*3^{2}=1\\ b_{4}=b_{1}*q^{3}=\frac{1}{9}*3^{3}=3 b_{3}=b_{1}*q^{2}=\frac{1}{9}*3^{2}=1\\ b_{4}=b_{1}*q^{3}=\frac{1}{9}*3^{3}=3](https://tex.z-dn.net/?f=b_%7B3%7D%3Db_%7B1%7D%2Aq%5E%7B2%7D%3D%5Cfrac%7B1%7D%7B9%7D%2A3%5E%7B2%7D%3D1%5C%5C%20b_%7B4%7D%3Db_%7B1%7D%2Aq%5E%7B3%7D%3D%5Cfrac%7B1%7D%7B9%7D%2A3%5E%7B3%7D%3D3)
Находим значение выражения:
![(b_{3})^{2}+b_{4}=1^{2}+3=4 (b_{3})^{2}+b_{4}=1^{2}+3=4](https://tex.z-dn.net/?f=%28b_%7B3%7D%29%5E%7B2%7D%2Bb_%7B4%7D%3D1%5E%7B2%7D%2B3%3D4)