![1)\frac{x+5}{(log_{3}(x+1))^{2}}\geq 0 1)\frac{x+5}{(log_{3}(x+1))^{2}}\geq 0](https://tex.z-dn.net/?f=1%29%5Cfrac%7Bx%2B5%7D%7B%28log_%7B3%7D%28x%2B1%29%29%5E%7B2%7D%7D%5Cgeq%200)
ОДЗ : 1) x + 1 > 0
x > - 1
![2)log_{3}(x+1)\neq0\\\\x+1\neq1\\\\x\neq0 2)log_{3}(x+1)\neq0\\\\x+1\neq1\\\\x\neq0](https://tex.z-dn.net/?f=2%29log_%7B3%7D%28x%2B1%29%5Cneq0%5C%5C%5C%5Cx%2B1%5Cneq1%5C%5C%5C%5Cx%5Cneq0)
Окончательно : x ∈ (- 1 ; 0) ∪ (0 ; + ∞)
0}} \right.\\\\x\geq -5" alt="\left \{ {{x+5\geq0 } \atop {(log_{3}(x+1))^{2}>0}} \right.\\\\x\geq -5" align="absmiddle" class="latex-formula">
Ответ с учётом ОДЗ : x ∈ (- 1 ; 0) ∪ (0 ; + ∞)
Наименьшее целое : 1
![2)log_{\frac{1}{9}}(9-x)=-2 2)log_{\frac{1}{9}}(9-x)=-2](https://tex.z-dn.net/?f=2%29log_%7B%5Cfrac%7B1%7D%7B9%7D%7D%289-x%29%3D-2)
ОДЗ : 9 - x > 0
- x > - 9
x < 9
x ∈ (- ∞ ; 9)
![9-x=(\frac{1}{9})^{-2} \\\\9-x=81\\\\x=-72 9-x=(\frac{1}{9})^{-2} \\\\9-x=81\\\\x=-72](https://tex.z-dn.net/?f=9-x%3D%28%5Cfrac%7B1%7D%7B9%7D%29%5E%7B-2%7D%20%5C%5C%5C%5C9-x%3D81%5C%5C%5C%5Cx%3D-72)
![3)2^{log_{2}7 }*log_{3}(\frac{1}{27})=7*log_{3}3^{-3}=7*(-3)=-21 3)2^{log_{2}7 }*log_{3}(\frac{1}{27})=7*log_{3}3^{-3}=7*(-3)=-21](https://tex.z-dn.net/?f=3%292%5E%7Blog_%7B2%7D7%20%7D%2Alog_%7B3%7D%28%5Cfrac%7B1%7D%7B27%7D%29%3D7%2Alog_%7B3%7D3%5E%7B-3%7D%3D7%2A%28-3%29%3D-21)
![4)\sqrt{3}Cos^{2}\frac{5\pi }{12}-\sqrt{3}Sin^{2}\frac{5\pi }{12}=\sqrt{3}(Cos^{2}\frac{5\pi }{12} -Sin^{2}\frac{5\pi }{12})=\sqrt{3}Cos\frac{5\pi }{6}=\sqrt{3}Cos(\pi-\frac{\pi }{6})=-\sqrt{3}Cos\frac{\pi }{6}=-\sqrt{3}*\frac{\sqrt{3} }{2}=-1,5 4)\sqrt{3}Cos^{2}\frac{5\pi }{12}-\sqrt{3}Sin^{2}\frac{5\pi }{12}=\sqrt{3}(Cos^{2}\frac{5\pi }{12} -Sin^{2}\frac{5\pi }{12})=\sqrt{3}Cos\frac{5\pi }{6}=\sqrt{3}Cos(\pi-\frac{\pi }{6})=-\sqrt{3}Cos\frac{\pi }{6}=-\sqrt{3}*\frac{\sqrt{3} }{2}=-1,5](https://tex.z-dn.net/?f=4%29%5Csqrt%7B3%7DCos%5E%7B2%7D%5Cfrac%7B5%5Cpi%20%7D%7B12%7D-%5Csqrt%7B3%7DSin%5E%7B2%7D%5Cfrac%7B5%5Cpi%20%7D%7B12%7D%3D%5Csqrt%7B3%7D%28Cos%5E%7B2%7D%5Cfrac%7B5%5Cpi%20%7D%7B12%7D%20-Sin%5E%7B2%7D%5Cfrac%7B5%5Cpi%20%7D%7B12%7D%29%3D%5Csqrt%7B3%7DCos%5Cfrac%7B5%5Cpi%20%7D%7B6%7D%3D%5Csqrt%7B3%7DCos%28%5Cpi-%5Cfrac%7B%5Cpi%20%7D%7B6%7D%29%3D-%5Csqrt%7B3%7DCos%5Cfrac%7B%5Cpi%20%7D%7B6%7D%3D-%5Csqrt%7B3%7D%2A%5Cfrac%7B%5Csqrt%7B3%7D%20%7D%7B2%7D%3D-1%2C5)