0\\\\5^{log_5^2x}=5^{log_5x\cdot log_5x}=\Big (5^{log_5x}\Big )^{log_5x}=x^{log_5x}\; \; ,\; \; \; \Big [\; a^{log_{a}b}=b\, \Big ]\\\\x^{log_5x}+x^{log_5x}\geq 2\sqrt[4]5\\\\2x^{log_5x}\geq 2\sqrt[4]5\\\\x^{log_5x}\geq \sqrt[4]5\\\\log_5(x^{log_5x})\geq log_5\sqrt[4]5\\\\log_5x\cdot log_5x\geq \frac{1}{4}\cdot log_55\; \; \; \; \Big [\, log_{a}x^{k}=k\cdot log_{a}x\, \Big ]\\\\log_5^2x\geq \frac{1}{4}\\\\log_5^2x-\frac{1}{4}\geq 0" alt="5^{log_5^2x}+x^{log_5x}\geq 2\sqrt[4]5\; \; ,\; \; \; \; ODZ:\; x>0\\\\5^{log_5^2x}=5^{log_5x\cdot log_5x}=\Big (5^{log_5x}\Big )^{log_5x}=x^{log_5x}\; \; ,\; \; \; \Big [\; a^{log_{a}b}=b\, \Big ]\\\\x^{log_5x}+x^{log_5x}\geq 2\sqrt[4]5\\\\2x^{log_5x}\geq 2\sqrt[4]5\\\\x^{log_5x}\geq \sqrt[4]5\\\\log_5(x^{log_5x})\geq log_5\sqrt[4]5\\\\log_5x\cdot log_5x\geq \frac{1}{4}\cdot log_55\; \; \; \; \Big [\, log_{a}x^{k}=k\cdot log_{a}x\, \Big ]\\\\log_5^2x\geq \frac{1}{4}\\\\log_5^2x-\frac{1}{4}\geq 0" align="absmiddle" class="latex-formula">