Ответ:
Пошаговое объяснение:
2) 3-2x≥0, -2x≥-3, x≤
, x≤1,5 x∈(-∞;1,5]
3)
=![\sqrt[3]{625-73} =\sqrt[3]{552} =2\sqrt[3]{69} \sqrt[3]{625-73} =\sqrt[3]{552} =2\sqrt[3]{69}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B625-73%7D%20%3D%5Csqrt%5B3%5D%7B552%7D%20%3D2%5Csqrt%5B3%5D%7B69%7D)
1) (6^√3*7^√3)/〖42〗^(√3-1) =〖42〗^√3/〖42〗^(√3-1) =
〖42〗^(√3-(√3-1))=〖42〗^1=42
2) ![8^{9-x} =64^{x} 8^{9-x} =64^{x}](https://tex.z-dn.net/?f=8%5E%7B9-x%7D%20%3D64%5E%7Bx%7D)
![8^{9-x} =8^{2x} 8^{9-x} =8^{2x}](https://tex.z-dn.net/?f=8%5E%7B9-x%7D%20%3D8%5E%7B2x%7D)
9-x=2x
9=2x+x
3x=9
x=3
3) Так как плоскости
параллельны , то ∠KA₁A₂=∠KB₁B₂, ∠K-общий. ΔКА₁А₂ ~ ΔКВ₁В₂. ![\frac{КА₁}{КВ₁} =\frac{КА₂}{КВ₂} =\frac{А₁А₂}{В₁В₂} =\frac{3}{4} \frac{КА₁}{КВ₁} =\frac{КА₂}{КВ₂} =\frac{А₁А₂}{В₁В₂} =\frac{3}{4}](https://tex.z-dn.net/?f=%5Cfrac%7B%D0%9A%D0%90%E2%82%81%7D%7B%D0%9A%D0%92%E2%82%81%7D%20%3D%5Cfrac%7B%D0%9A%D0%90%E2%82%82%7D%7B%D0%9A%D0%92%E2%82%82%7D%20%3D%5Cfrac%7B%D0%90%E2%82%81%D0%90%E2%82%82%7D%7B%D0%92%E2%82%81%D0%92%E2%82%82%7D%20%3D%5Cfrac%7B3%7D%7B4%7D)
Пусть КА₁=х, тогда ![\frac{x}{х+7} =\frac{12}{КВ₂} =\frac{3}{4} \frac{x}{х+7} =\frac{12}{КВ₂} =\frac{3}{4}](https://tex.z-dn.net/?f=%5Cfrac%7Bx%7D%7B%D1%85%2B7%7D%20%3D%5Cfrac%7B12%7D%7B%D0%9A%D0%92%E2%82%82%7D%20%3D%5Cfrac%7B3%7D%7B4%7D)
КВ₂=![\frac{12*4}{3} =16 \frac{12*4}{3} =16](https://tex.z-dn.net/?f=%5Cfrac%7B12%2A4%7D%7B3%7D%20%3D16)
![\frac{x}{x+7} =\frac{3}{4} \frac{x}{x+7} =\frac{3}{4}](https://tex.z-dn.net/?f=%5Cfrac%7Bx%7D%7Bx%2B7%7D%20%3D%5Cfrac%7B3%7D%7B4%7D)
4x=3x+21
x=21
КА₁=21, КВ₂=16