\nu=\frac{1}{2\pi\sqrt{LC} } \\\\C_1=\frac{E*E_0*S}{D}=\frac{8,85*10^{-12}*0,05}{0,00015m}\approx2,95*10^{-9}\\\\C_2=\frac{8,85*10^{-12}*0,2}{0,00015}\approx1,18*10^{-8}\\\\\\\nu_1=\frac{1}{2*3,14*\sqrt{500*10^{-6}*2,95*10^{-9}} }\approx131046\\\\\nu_2=\frac{1}{2*3,14\sqrt{500*10^{-6}*1,18*10^{-8}} }\approx65523\\\\\\65523<\nu<131046" alt="L=500*10^{-6}\\\\d=0,15mm=0,00015m\\\\S_1=0,05m\\\\S_2=0,2m\\\\\nu_1-?\\\nu_2-?\\\\\\T=2\pi\sqrt{LC} => \nu=\frac{1}{2\pi\sqrt{LC} } \\\\C_1=\frac{E*E_0*S}{D}=\frac{8,85*10^{-12}*0,05}{0,00015m}\approx2,95*10^{-9}\\\\C_2=\frac{8,85*10^{-12}*0,2}{0,00015}\approx1,18*10^{-8}\\\\\\\nu_1=\frac{1}{2*3,14*\sqrt{500*10^{-6}*2,95*10^{-9}} }\approx131046\\\\\nu_2=\frac{1}{2*3,14\sqrt{500*10^{-6}*1,18*10^{-8}} }\approx65523\\\\\\65523<\nu<131046" align="absmiddle" class="latex-formula">
На такую частота можно настроить контур.