Исправленное условие тригонометрического уравнения
cos (240°-α) - 16·cos α = -15 | ×(-1)
-cos (180° + 60° - α) + 16 cos α = 15
cos (60° - α) + 16 cos α = 15
![\cos 60\textdegree \cos \alpha + \sin 60\textdegree \sin \alpha +16\cos \alpha =15 \\\\ \dfrac12\cos \alpha +\dfrac{\sqrt3}2\sin \alpha + 16\cos \alpha =15 ~~~| \cdot 2\\\\ \cos \alpha +\sqrt3\sin \alpha +32\cos \alpha =30\\\\ 33\cos\alpha +\sqrt3\sin \alpha =30 \cos 60\textdegree \cos \alpha + \sin 60\textdegree \sin \alpha +16\cos \alpha =15 \\\\ \dfrac12\cos \alpha +\dfrac{\sqrt3}2\sin \alpha + 16\cos \alpha =15 ~~~| \cdot 2\\\\ \cos \alpha +\sqrt3\sin \alpha +32\cos \alpha =30\\\\ 33\cos\alpha +\sqrt3\sin \alpha =30](https://tex.z-dn.net/?f=%5Ccos%2060%5Ctextdegree%20%5Ccos%20%5Calpha%20%2B%20%5Csin%2060%5Ctextdegree%20%5Csin%20%5Calpha%20%2B16%5Ccos%20%5Calpha%20%3D15%20%5C%5C%5C%5C%20%5Cdfrac12%5Ccos%20%5Calpha%20%2B%5Cdfrac%7B%5Csqrt3%7D2%5Csin%20%5Calpha%20%2B%2016%5Ccos%20%5Calpha%20%3D15%20~~~%7C%20%5Ccdot%202%5C%5C%5C%5C%20%5Ccos%20%5Calpha%20%2B%5Csqrt3%5Csin%20%5Calpha%20%2B32%5Ccos%20%5Calpha%20%3D30%5C%5C%5C%5C%2033%5Ccos%5Calpha%20%2B%5Csqrt3%5Csin%20%5Calpha%20%3D30)
Разделим все уравнение на выражение
![\sqrt{33^2+\sqrt3^2}=\sqrt{1092}=2\sqrt{273} \sqrt{33^2+\sqrt3^2}=\sqrt{1092}=2\sqrt{273}](https://tex.z-dn.net/?f=%5Csqrt%7B33%5E2%2B%5Csqrt3%5E2%7D%3D%5Csqrt%7B1092%7D%3D2%5Csqrt%7B273%7D)
![\dfrac{33}{2\sqrt{273}}\cos\alpha +\dfrac{\sqrt3}{2\sqrt{273}}\sin \alpha =\dfrac{30}{2\sqrt{273}} \dfrac{33}{2\sqrt{273}}\cos\alpha +\dfrac{\sqrt3}{2\sqrt{273}}\sin \alpha =\dfrac{30}{2\sqrt{273}}](https://tex.z-dn.net/?f=%5Cdfrac%7B33%7D%7B2%5Csqrt%7B273%7D%7D%5Ccos%5Calpha%20%2B%5Cdfrac%7B%5Csqrt3%7D%7B2%5Csqrt%7B273%7D%7D%5Csin%20%5Calpha%20%3D%5Cdfrac%7B30%7D%7B2%5Csqrt%7B273%7D%7D)
Чтобы воспользоваться формулой
sin x cos y + sin y cos x = sin (x + y)
введем вспомогательный угол
, для которого
![\sin \beta =\dfrac{33}{2\sqrt{273}};~~~\cos \beta = \dfrac{\sqrt 3}{2\sqrt{273}} \sin \beta =\dfrac{33}{2\sqrt{273}};~~~\cos \beta = \dfrac{\sqrt 3}{2\sqrt{273}}](https://tex.z-dn.net/?f=%5Csin%20%5Cbeta%20%3D%5Cdfrac%7B33%7D%7B2%5Csqrt%7B273%7D%7D%3B~~~%5Ccos%20%5Cbeta%20%3D%20%5Cdfrac%7B%5Csqrt%203%7D%7B2%5Csqrt%7B273%7D%7D)
![\sin \beta \cos \alpha + \cos \beta \sin \alpha =\dfrac{30}{2\sqrt{273}}\\\\ \sin (\alpha +\beta )=\dfrac{15}{\sqrt{273}}\\\\ \alpha +\beta =(-1)^n \arcsin \Big(\dfrac{15}{\sqrt{273}}\Big)+\pi n,~~n\in Z\\\\\\ \boldsymbol{\alpha =(-1)^n \arcsin \Big(\dfrac{15}{\sqrt{273}}\Big)-\beta +\pi n,~~n\in Z} \sin \beta \cos \alpha + \cos \beta \sin \alpha =\dfrac{30}{2\sqrt{273}}\\\\ \sin (\alpha +\beta )=\dfrac{15}{\sqrt{273}}\\\\ \alpha +\beta =(-1)^n \arcsin \Big(\dfrac{15}{\sqrt{273}}\Big)+\pi n,~~n\in Z\\\\\\ \boldsymbol{\alpha =(-1)^n \arcsin \Big(\dfrac{15}{\sqrt{273}}\Big)-\beta +\pi n,~~n\in Z}](https://tex.z-dn.net/?f=%5Csin%20%5Cbeta%20%5Ccos%20%5Calpha%20%2B%20%5Ccos%20%5Cbeta%20%5Csin%20%5Calpha%20%3D%5Cdfrac%7B30%7D%7B2%5Csqrt%7B273%7D%7D%5C%5C%5C%5C%20%5Csin%20%28%5Calpha%20%2B%5Cbeta%20%29%3D%5Cdfrac%7B15%7D%7B%5Csqrt%7B273%7D%7D%5C%5C%5C%5C%20%5Calpha%20%2B%5Cbeta%20%3D%28-1%29%5En%20%5Carcsin%20%5CBig%28%5Cdfrac%7B15%7D%7B%5Csqrt%7B273%7D%7D%5CBig%29%2B%5Cpi%20n%2C~~n%5Cin%20Z%5C%5C%5C%5C%5C%5C%20%5Cboldsymbol%7B%5Calpha%20%3D%28-1%29%5En%20%5Carcsin%20%5CBig%28%5Cdfrac%7B15%7D%7B%5Csqrt%7B273%7D%7D%5CBig%29-%5Cbeta%20%2B%5Cpi%20n%2C~~n%5Cin%20Z%7D)
где угол β определен следующим образом:
![\sin \beta =\dfrac{33}{2\sqrt{273}};~~~\cos \beta = \dfrac{\sqrt 3}{2\sqrt{273}}=\dfrac 1{2\sqrt{91}};~~~\beta \in \Big(0;\dfrac{\pi}2\Big) \sin \beta =\dfrac{33}{2\sqrt{273}};~~~\cos \beta = \dfrac{\sqrt 3}{2\sqrt{273}}=\dfrac 1{2\sqrt{91}};~~~\beta \in \Big(0;\dfrac{\pi}2\Big)](https://tex.z-dn.net/?f=%5Csin%20%5Cbeta%20%3D%5Cdfrac%7B33%7D%7B2%5Csqrt%7B273%7D%7D%3B~~~%5Ccos%20%5Cbeta%20%3D%20%5Cdfrac%7B%5Csqrt%203%7D%7B2%5Csqrt%7B273%7D%7D%3D%5Cdfrac%201%7B2%5Csqrt%7B91%7D%7D%3B~~~%5Cbeta%20%5Cin%20%5CBig%280%3B%5Cdfrac%7B%5Cpi%7D2%5CBig%29)
Ответ:
![\boxed{\boldsymbol{\alpha =(-1)^n \arcsin \Big(\dfrac{15}{\sqrt{273}}\Big)-\arcsin \Big(\dfrac{33}{2\sqrt{273}}\Big) +\pi n,~~n\in Z}} \boxed{\boldsymbol{\alpha =(-1)^n \arcsin \Big(\dfrac{15}{\sqrt{273}}\Big)-\arcsin \Big(\dfrac{33}{2\sqrt{273}}\Big) +\pi n,~~n\in Z}}](https://tex.z-dn.net/?f=%5Cboxed%7B%5Cboldsymbol%7B%5Calpha%20%3D%28-1%29%5En%20%5Carcsin%20%5CBig%28%5Cdfrac%7B15%7D%7B%5Csqrt%7B273%7D%7D%5CBig%29-%5Carcsin%20%5CBig%28%5Cdfrac%7B33%7D%7B2%5Csqrt%7B273%7D%7D%5CBig%29%20%2B%5Cpi%20n%2C~~n%5Cin%20Z%7D%7D)