Решите уравнение 11 класс

0 голосов
18 просмотров

Решите уравнение 11 класс


image

Алгебра (458 баллов) | 18 просмотров
0

А что вместо точек ?

0

вот такое задание, без дополнительной информации

0

может это прогрессия

Дан 1 ответ
0 голосов
Правильный ответ

Будем подставлять вместо x целые неотрицательные числа. При x = 0, 2x + 1 = 1, при x = 1, 2x + 1 = 3, при x = 2, 2x + 1 = 5 т. е. ряд в числителе дроби образует арифметическую прогрессию c разностью d = 2, где первый член a₁ = 1, второй a₂ = a₁ + d = 3 и т. д. Рассмотрим ряд в знаменателе дроби. Представим его в виде 1/2 + 1/6 + ... + 1/342 = 1/1*2 + 1/2*3 + ... + 1/18*19. Найдем сумму этого ряда. Т. к. для натуральных n имеет место равенство 1/n*(n+1) = 1/n - 1/(n+1), то применим это равенство последовательно для всех n от 1 до 18. Получим 1/2 + 1/6 + ... + 1/342 = (1 - 1/2) + (1/2 - 1/3) + (1/3 - 1/4) + ... + (1/18 - 1/19) = 1 - 1/19 = 18/19. Таким образом 1 + 3 + ... + (2x + 1) =  342*18/19 = 18*19*18/19 = 18². Сумму арифметической прогрессии в числителе находим по формуле ((a₁ + aₙ)/2)((aₙ - a₁)/(a₂ - a₁) + 1). У нас a₁ = 1, a₂ = 3 и aₙ = 2x+1. Тогда сумма 1 + 3 + ... + (2x + 1) = ((1 + 2x + 1)/2)((2x + 1 - 1)/(3 - 1) + 1) = (2(x + 1)/2)(2x/2 + 1) = (x + 1)(x + 1) = (x + 1)². Окончательно имеем (x + 1)² = 18² => x + 1 = 18 => x = 17.

(220k баллов)