Данное дифференциальное уравнение является однородным. Для однородных уравнений берут замену ![y=ux y=ux](https://tex.z-dn.net/?f=y%3Dux)
![y=u'x+u y=u'x+u](https://tex.z-dn.net/?f=y%3Du%27x%2Bu)
![x^2(u'x+u)=u^2x^2+4ux^2+2x^2\\ u'x+u=u^2+4u+2\\ u'x=u^2+3u+2 x^2(u'x+u)=u^2x^2+4ux^2+2x^2\\ u'x+u=u^2+4u+2\\ u'x=u^2+3u+2](https://tex.z-dn.net/?f=x%5E2%28u%27x%2Bu%29%3Du%5E2x%5E2%2B4ux%5E2%2B2x%5E2%5C%5C%20u%27x%2Bu%3Du%5E2%2B4u%2B2%5C%5C%20u%27x%3Du%5E2%2B3u%2B2)
Получили дифференциальное уравнение с разделяющимися переменными, тогда разделим переменные и проинтегрируем обе части уравнения
![\displaystyle \int\frac{du}{u^2+3u+2}=\int\frac{dx}{x}~~\Rightarrow~~\int\frac{du}{(u+1)(u+2)}=\int\frac{dx}{x}~~\Rightarrow~~\\ \\ \\ \Rightarrow~~ \int\frac{u+2-(u+1)}{(u+1)(u+2)}du=\int\frac{dx}{x}~~\Rightarrow~~\int\bigg(\frac{1}{u+1}-\frac{1}{u+2}\bigg)du=\int\frac{dx}{x}\\ \\ \\ \ln|u+1|-\ln|u+2|=\ln |x|+\ln C\\ \\ \ln \bigg|\frac{u+1}{u+2}\bigg|=\ln |Cx|\\ \\ \frac{u+1}{u+2}=Cx \displaystyle \int\frac{du}{u^2+3u+2}=\int\frac{dx}{x}~~\Rightarrow~~\int\frac{du}{(u+1)(u+2)}=\int\frac{dx}{x}~~\Rightarrow~~\\ \\ \\ \Rightarrow~~ \int\frac{u+2-(u+1)}{(u+1)(u+2)}du=\int\frac{dx}{x}~~\Rightarrow~~\int\bigg(\frac{1}{u+1}-\frac{1}{u+2}\bigg)du=\int\frac{dx}{x}\\ \\ \\ \ln|u+1|-\ln|u+2|=\ln |x|+\ln C\\ \\ \ln \bigg|\frac{u+1}{u+2}\bigg|=\ln |Cx|\\ \\ \frac{u+1}{u+2}=Cx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%5Cfrac%7Bdu%7D%7Bu%5E2%2B3u%2B2%7D%3D%5Cint%5Cfrac%7Bdx%7D%7Bx%7D~~%5CRightarrow~~%5Cint%5Cfrac%7Bdu%7D%7B%28u%2B1%29%28u%2B2%29%7D%3D%5Cint%5Cfrac%7Bdx%7D%7Bx%7D~~%5CRightarrow~~%5C%5C%20%5C%5C%20%5C%5C%20%5CRightarrow~~%20%5Cint%5Cfrac%7Bu%2B2-%28u%2B1%29%7D%7B%28u%2B1%29%28u%2B2%29%7Ddu%3D%5Cint%5Cfrac%7Bdx%7D%7Bx%7D~~%5CRightarrow~~%5Cint%5Cbigg%28%5Cfrac%7B1%7D%7Bu%2B1%7D-%5Cfrac%7B1%7D%7Bu%2B2%7D%5Cbigg%29du%3D%5Cint%5Cfrac%7Bdx%7D%7Bx%7D%5C%5C%20%5C%5C%20%5C%5C%20%5Cln%7Cu%2B1%7C-%5Cln%7Cu%2B2%7C%3D%5Cln%20%7Cx%7C%2B%5Cln%20C%5C%5C%20%5C%5C%20%5Cln%20%5Cbigg%7C%5Cfrac%7Bu%2B1%7D%7Bu%2B2%7D%5Cbigg%7C%3D%5Cln%20%7CCx%7C%5C%5C%20%5C%5C%20%5Cfrac%7Bu%2B1%7D%7Bu%2B2%7D%3DCx)
Сделаем обратную замену, подставив u = y/x, получим:
![\displaystyle \frac{\frac{y}{x}+1}{\frac{y}{x}+2}=Cx~~\Rightarrow~~ \frac{y+x}{y+2x}=Cx~~\Rightarrow~~ \boxed{y=\dfrac{x(1-2Cx)}{Cx-1}} \displaystyle \frac{\frac{y}{x}+1}{\frac{y}{x}+2}=Cx~~\Rightarrow~~ \frac{y+x}{y+2x}=Cx~~\Rightarrow~~ \boxed{y=\dfrac{x(1-2Cx)}{Cx-1}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7B%5Cfrac%7By%7D%7Bx%7D%2B1%7D%7B%5Cfrac%7By%7D%7Bx%7D%2B2%7D%3DCx~~%5CRightarrow~~%20%5Cfrac%7By%2Bx%7D%7By%2B2x%7D%3DCx~~%5CRightarrow~~%20%5Cboxed%7By%3D%5Cdfrac%7Bx%281-2Cx%29%7D%7BCx-1%7D%7D)