Мистер Фокс нарисовал квадрат со стороной 1. Затем он разделил обе его горизонтальные...

0 голосов
32 просмотров

Мистер Фокс нарисовал квадрат со стороной 1. Затем он разделил обе его горизонтальные стороны на 120 равных частей и провел 119 вертикальных отрезков, соединяющих соответствующие точки. После этого он разбил обе вертикальные стороны на 150 равных частей и провел горизонтальные отрезки, соединяющие соответствующие точки. Сколько разных (то есть имеющих разные стороны) квадратов можно увидеть на получившемся рисунке?С ОБЪЯСНЕНИЕМ!!НЕ ИЗ ИНЕТА!!!!!!


Математика (33 баллов) | 32 просмотров
Дан 1 ответ
0 голосов

Ответ:

10 квадратов

Пошаговое объяснение:

Сторона квадрата равна 1.

У квадрата равные стороны. Эти стороны разделены на равные по величине отрезки.

Горизонтальные стороны - на 120 равных частей (1:120= 1/120 - длина одной горизонтальной части)

вертикальные стороны - на 150 равных частей  (1:150=1/150 - длина одной вертикальной части)

найдем отношение длин маленьких отрезков:

1/150 : 1/120 = 1/15 : 1/15 ⇔ 15:12 - отношение длин отрезков

Т.е. 15 частей по 1/150 вертикальной стороны соответствуют по величине 12 частям по 1/120 горизонтальной стороны


15/150 = 12/120 ⇔ 15/150 х 12/120 - самый маленький квадрат

Если добавлять каждый раз с вертикальной стороны по 15 отрезков (15*1/150=15/150), а с горизонтальной стороны по 12 отрезков (12*1/120=12/120), получим последовательность увеличивающихся в размере квадратов, самый большой из которых  - исходный, со стороной 150/150 (или 120/120)


15/150 х 12/120 - самый маленький квадрат

(15/150 + 15/150) х (12/120+12/120) = 30/150 х 24/120 - второй квадрат

(30/150 + 15/150) х (24/120+12/120) = 45/150 х 36/120 - третий квадрат

(45/150 + 15/150) х (36/120+12/120) = 60/150 х 48/120 - четвертый квадрат

(60/150+15/150) х (48/120+12/120) = 75/150 х 60/120 - пятый квадрат

и т. д.

150/150 х 120/120 - самый большой квадрат (исходный, со стороной 1х1)

Следовательно длины сторон новых квадратов увеличиваются согласно закону арифметической прогрессии.


an = a₁ + (n-1)*d  - формула n-го члена арифметической прогрессии.

Посчитаем количество квадратов по вертикальной стороне

an = 150/150 = 1 - последний (n-й) член ариф. прогрессии

a₁= 15/150 - первый член ариф. прогрессии (для вертикальной стороны)

d = 15/150 - разность ариф. прогрессии (для вертикальной стороны)

n - количество членов ариф. прогрессии (количество квадратов)


an = a₁ + (n-1)*d

1 = 15/150 + (n-1)*15/150

1 = 15/150 + (15/150)*n - 15/150

1 = (15/150)*n

n = 1 : (15/150) = 1*150/15 = 10 - количество членов ариф. прогрессии (количество квадратов)


Проверка!!!

Посчитаем количество квадратов по горизонтальной стороне стороне

an = 120/120 = 1 - последний (n-й) член ариф. прогрессии

a₁= 12/120 -первый член ариф. прогрессии (для горизонтальной стороны)

d = 12/120 - разность ариф. прогрессии (для горизонтальной стороны)

n - количество членов ариф. прогрессии (количество квадратов)

an = a₁ + (n-1)*d

1 = 12/120 + (n-1)*12/120

1= 12/120 + (12/120)*n - 12/120

1 = 12/120*n

n = 1 : (12/120) = 1*120/12 = 10 - количество членов ариф. прогрессии (количество квадратов) - ВЕРНО

Ответ: 10 квадратов

(4.0k баллов)