(5^{1024}+1)-0.25\cdot5^{2048}= \\ =\dfrac{(5-1)(5+1)(5^2+1)< \cdot \cdot \cdot >(5^{1024}+1)}{4}-\dfrac{1}{4}\cdot5^{2048}= \\ =\dfrac{1}{4}(5^{2048}-1)-\dfrac{1}{4}\cdot5^{2048}=\boxed{\sf-\dfrac{1}{4}}" alt="\sf (5+1)(5^2+1)< \cdot \cdot \cdot >(5^{1024}+1)-0.25\cdot5^{2048}= \\ =\dfrac{(5-1)(5+1)(5^2+1)< \cdot \cdot \cdot >(5^{1024}+1)}{4}-\dfrac{1}{4}\cdot5^{2048}= \\ =\dfrac{1}{4}(5^{2048}-1)-\dfrac{1}{4}\cdot5^{2048}=\boxed{\sf-\dfrac{1}{4}}" align="absmiddle" class="latex-formula">