Найдите угол между касательной к кривой y=x^3+2x^2 в точке с абсциссой x=1 и прямой...

0 голосов
40 просмотров

Найдите угол между касательной к кривой y=x^3+2x^2 в точке с абсциссой x=1 и прямой 2x-3y-3=0


Математика (12 баллов) | 40 просмотров
Дан 1 ответ
0 голосов

Пошаговое объяснение:

1. Находим уравнение касательной (достаточно только коэффициент наклона)

k = Y'(x) = 3*x² + 4*x

Вычисляем при х = Xo=1

k(Xo) = k(1) = 3 + 4 = k1 = 7 - наклон первой прямой (касательной). Y= 7*x - 4/

2. Находим коэффициент наклона второй прямой.

3*y = 2*x - 3

y = 2/3*x - 1.   k2 = 2/3 -

3. Угол между касательными находим по формуле "разность тангенсов".

tg(α) = (7-2/3)/(1+ 4*2/3) = 1 2/17 = 1.118

Угол - arctg(1.118) = 0.841 = 48.18° - ответ

Рисунки к задаче в приложении.  Удивительно, но очень походе на угол в 48 градусов.


image
image
(500k баллов)