==============================================
Применим следующие формулы:
а^log_a(b) = b - основное логарифмическое тождество
log_a(b•c) = log_a(b) + log_a(c)
==============================================
![{x}^{log_{2}(x)}=64x\\\\({{2}^{log_{2}(x)})}^{ log_{2}(x)}=64x\\\\{2}^{({log_{2}(x))}^{2}}=64x\\\\({log_{2}(x)})^{2}=log_{2}(64x)\\\\({log_{2}(x))}^{2}=log_{2}(64)+log_{2}(x)\\\\({log_{2}(x)})^{2}-log_{2}(x)-6=0\\ {x}^{log_{2}(x)}=64x\\\\({{2}^{log_{2}(x)})}^{ log_{2}(x)}=64x\\\\{2}^{({log_{2}(x))}^{2}}=64x\\\\({log_{2}(x)})^{2}=log_{2}(64x)\\\\({log_{2}(x))}^{2}=log_{2}(64)+log_{2}(x)\\\\({log_{2}(x)})^{2}-log_{2}(x)-6=0\\](https://tex.z-dn.net/?f=%7Bx%7D%5E%7Blog_%7B2%7D%28x%29%7D%3D64x%5C%5C%5C%5C%28%7B%7B2%7D%5E%7Blog_%7B2%7D%28x%29%7D%29%7D%5E%7B%20log_%7B2%7D%28x%29%7D%3D64x%5C%5C%5C%5C%7B2%7D%5E%7B%28%7Blog_%7B2%7D%28x%29%29%7D%5E%7B2%7D%7D%3D64x%5C%5C%5C%5C%28%7Blog_%7B2%7D%28x%29%7D%29%5E%7B2%7D%3Dlog_%7B2%7D%2864x%29%5C%5C%5C%5C%28%7Blog_%7B2%7D%28x%29%29%7D%5E%7B2%7D%3Dlog_%7B2%7D%2864%29%2Blog_%7B2%7D%28x%29%5C%5C%5C%5C%28%7Blog_%7B2%7D%28x%29%7D%29%5E%7B2%7D-log_%7B2%7D%28x%29-6%3D0%5C%5C)
Пусть
![log_{2}(x)=t\\ log_{2}(x)=t\\](https://tex.z-dn.net/?f=log_%7B2%7D%28x%29%3Dt%5C%5C)
тогда
![{t}^{2}-t-6=0\\(t-3)(t+2)=0\\\\ {t}^{2}-t-6=0\\(t-3)(t+2)=0\\\\](https://tex.z-dn.net/?f=%7Bt%7D%5E%7B2%7D-t-6%3D0%5C%5C%28t-3%29%28t%2B2%29%3D0%5C%5C%5C%5C)
Перейдём к обратной замене:
![1)\:\:t_{1}=3\\\\log_{2}(x)=3\\\\x=8\\\\2)\:\:t_{2}=-2\\\\log_{2}(x)=-2\\\\x=frac{1}{4}=0.25\\\\ 1)\:\:t_{1}=3\\\\log_{2}(x)=3\\\\x=8\\\\2)\:\:t_{2}=-2\\\\log_{2}(x)=-2\\\\x=frac{1}{4}=0.25\\\\](https://tex.z-dn.net/?f=1%29%5C%3A%5C%3At_%7B1%7D%3D3%5C%5C%5C%5Clog_%7B2%7D%28x%29%3D3%5C%5C%5C%5Cx%3D8%5C%5C%5C%5C2%29%5C%3A%5C%3At_%7B2%7D%3D-2%5C%5C%5C%5Clog_%7B2%7D%28x%29%3D-2%5C%5C%5C%5Cx%3Dfrac%7B1%7D%7B4%7D%3D0.25%5C%5C%5C%5C)
ОДЗ: х > 0
Корни удовлетворяют ОДЗ
ОТВЕТ: 0,25 ; 8